File size: 10,563 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines the base task abstraction."""
import abc
import functools
from typing import Any, Callable, Optional

import six
import tensorflow as tf

from official.modeling.hyperparams import config_definitions as cfg
from official.utils import registry


@six.add_metaclass(abc.ABCMeta)
class Task(tf.Module):
  """A single-replica view of training procedure.

  Tasks provide artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss
  and customized metrics with reduction.
  """

  # Special keys in train/validate step returned logs.
  loss = "loss"

  def __init__(self, params: cfg.TaskConfig):
    self._task_config = params

  @property
  def task_config(self) -> cfg.TaskConfig:
    return self._task_config

  def initialize(self, model: tf.keras.Model):
    """A callback function used as CheckpointManager's init_fn.

    This function will be called when no checkpoint found for the model.
    If there is a checkpoint, the checkpoint will be loaded and this function
    will not be called. You can use this callback function to load a pretrained
    checkpoint, saved under a directory other than the model_dir.

    Args:
      model: The keras.Model built or used by this task.
    """
    pass

  @abc.abstractmethod
  def build_model(self) -> tf.keras.Model:
    """Creates the model architecture.

    Returns:
      A model instance.
    """

  def compile_model(self,
                    model: tf.keras.Model,
                    optimizer: tf.keras.optimizers.Optimizer,
                    loss=None,
                    train_step: Optional[Callable[..., Any]] = None,
                    validation_step: Optional[Callable[..., Any]] = None,
                    **kwargs) -> tf.keras.Model:
    """Compiles the model with objects created by the task.

    The method should not be used in any customized training implementation.

    Args:
      model: a keras.Model.
      optimizer: the keras optimizer.
      loss: a callable/list of losses.
      train_step: optional train step function defined by the task.
      validation_step: optional validation_step step function defined by the
        task.
      **kwargs: other kwargs consumed by keras.Model compile().

    Returns:
      a compiled keras.Model.
    """
    if bool(loss is None) == bool(train_step is None):
      raise ValueError("`loss` and `train_step` should be exclusive to "
                       "each other.")
    model.compile(optimizer=optimizer, loss=loss, **kwargs)

    if train_step:
      model.train_step = functools.partial(
          train_step, model=model, optimizer=model.optimizer)
    if validation_step:
      model.test_step = functools.partial(validation_step, model=model)
    return model

  @abc.abstractmethod
  def build_inputs(self,
                   params: cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
    """Returns a dataset or a nested structure of dataset functions.

    Dataset functions define per-host datasets with the per-replica batch size.

    Args:
      params: hyperparams to create input pipelines.
      input_context: optional distribution input pipeline context.

    Returns:
      A nested structure of per-replica input functions.
    """

  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
    """Standard interface to compute losses.

    Args:
      labels: optional label tensors.
      model_outputs: a nested structure of output tensors.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
    del model_outputs, labels

    if aux_losses is None:
      losses = [tf.constant(0.0, dtype=tf.float32)]
    else:
      losses = aux_losses
    total_loss = tf.add_n(losses)
    return total_loss

  def build_metrics(self, training: bool = True):
    """Gets streaming metrics for training/validation."""
    del training
    return []

  def process_metrics(self, metrics, labels, model_outputs):
    """Process and update metrics. Called when using custom training loop API.

    Args:
      metrics: a nested structure of metrics objects.
        The return of function self.build_metrics.
      labels: a tensor or a nested structure of tensors.
      model_outputs: a tensor or a nested structure of tensors.
        For example, output of the keras model built by self.build_model.
    """
    for metric in metrics:
      metric.update_state(labels, model_outputs)

  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
    """Process and update compiled_metrics. call when using compile/fit API.

    Args:
      compiled_metrics: the compiled metrics (model.compiled_metrics).
      labels: a tensor or a nested structure of tensors.
      model_outputs: a tensor or a nested structure of tensors.
        For example, output of the keras model built by self.build_model.
    """
    compiled_metrics.update_state(labels, model_outputs)

  def train_step(self,
                 inputs,
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    if isinstance(inputs, tuple) and len(inputs) == 2:
      features, labels = inputs
    else:
      features, labels = inputs, inputs
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Computes per-replica loss.
      loss = self.build_losses(
          labels=labels, model_outputs=outputs, aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync

      # For mixed precision, when a LossScaleOptimizer is used, the loss is
      # scaled to avoid numeric underflow.
      if isinstance(optimizer,
                    tf.keras.mixed_precision.experimental.LossScaleOptimizer):
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)

    if isinstance(optimizer,
                  tf.keras.mixed_precision.experimental.LossScaleOptimizer):
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))
    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    if isinstance(inputs, tuple) and len(inputs) == 2:
      features, labels = inputs
    else:
      features, labels = inputs, inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

  def inference_step(self, inputs, model: tf.keras.Model):
    """Performs the forward step."""
    return model(inputs, training=False)

  def aggregate_logs(self, state, step_logs):
    """Optional aggregation over logs returned from a validation step."""
    pass

  def reduce_aggregated_logs(self, aggregated_logs):
    """Optional reduce of aggregated logs over validation steps."""
    return {}


_REGISTERED_TASK_CLS = {}


# TODO(b/158268740): Move these outside the base class file.
# TODO(b/158741360): Add type annotations once pytype checks across modules.
def register_task_cls(task_config_cls):
  """Decorates a factory of Tasks for lookup by a subclass of TaskConfig.

  This decorator supports registration of tasks as follows:

  ```
  @dataclasses.dataclass
  class MyTaskConfig(TaskConfig):
    # Add fields here.
    pass

  @register_task_cls(MyTaskConfig)
  class MyTask(Task):
    # Inherits def __init__(self, task_config).
    pass

  my_task_config = MyTaskConfig()
  my_task = get_task(my_task_config)  # Returns MyTask(my_task_config).
  ```

  Besisdes a class itself, other callables that create a Task from a TaskConfig
  can be decorated by the result of this function, as long as there is at most
  one registration for each config class.

  Args:
    task_config_cls: a subclass of TaskConfig (*not* an instance of TaskConfig).
      Each task_config_cls can only be used for a single registration.

  Returns:
    A callable for use as class decorator that registers the decorated class
    for creation from an instance of task_config_cls.
  """
  return registry.register(_REGISTERED_TASK_CLS, task_config_cls)


# The user-visible get_task() is defined after classes have been registered.
# TODO(b/158741360): Add type annotations once pytype checks across modules.
def get_task_cls(task_config_cls):
  task_cls = registry.lookup(_REGISTERED_TASK_CLS, task_config_cls)
  return task_cls