Spaces:
Running
Running
File size: 38,426 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT library to process data for classification task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import csv
import importlib
import os
from absl import logging
import tensorflow as tf
import tensorflow_datasets as tfds
from official.nlp.bert import tokenization
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self,
guid,
text_a,
text_b=None,
label=None,
weight=None,
int_iden=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
weight: (Optional) float. The weight of the example to be used during
training.
int_iden: (Optional) int. The int identification number of example in the
corpus.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
self.weight = weight
self.int_iden = int_iden
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
is_real_example=True,
weight=None,
int_iden=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.is_real_example = is_real_example
self.weight = weight
self.int_iden = int_iden
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
self.process_text_fn = process_text_fn
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@staticmethod
def get_processor_name():
"""Gets the string identifier of the processor."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.io.gfile.GFile(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class XnliProcessor(DataProcessor):
"""Processor for the XNLI data set."""
supported_languages = [
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
"ur", "vi", "zh"
]
def __init__(self,
language="en",
process_text_fn=tokenization.convert_to_unicode):
super(XnliProcessor, self).__init__(process_text_fn)
if language == "all":
self.languages = XnliProcessor.supported_languages
elif language not in XnliProcessor.supported_languages:
raise ValueError("language %s is not supported for XNLI task." % language)
else:
self.languages = [language]
def get_train_examples(self, data_dir):
"""See base class."""
lines = []
for language in self.languages:
# Skips the header.
lines.extend(
self._read_tsv(
os.path.join(data_dir, "multinli",
"multinli.train.%s.tsv" % language))[1:])
examples = []
for (i, line) in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
if label == self.process_text_fn("contradictory"):
label = self.process_text_fn("contradiction")
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "dev-%d" % i
text_a = self.process_text_fn(line[6])
text_b = self.process_text_fn(line[7])
label = self.process_text_fn(line[1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "test-%d" % i
language = self.process_text_fn(line[0])
text_a = self.process_text_fn(line[6])
text_b = self.process_text_fn(line[7])
label = self.process_text_fn(line[1])
examples_by_lang[language].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XNLI"
class XtremeXnliProcessor(DataProcessor):
"""Processor for the XTREME XNLI data set."""
supported_languages = [
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
"ur", "vi", "zh"
]
def get_train_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
examples = []
for (i, line) in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
examples = []
for (i, line) in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {k: [] for k in self.supported_languages}
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
for (i, line) in enumerate(lines):
guid = f"test-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = "contradiction"
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-XNLI"
class PawsxProcessor(DataProcessor):
"""Processor for the PAWS-X data set."""
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
def __init__(self,
language="en",
process_text_fn=tokenization.convert_to_unicode):
super(PawsxProcessor, self).__init__(process_text_fn)
if language == "all":
self.languages = PawsxProcessor.supported_languages
elif language not in PawsxProcessor.supported_languages:
raise ValueError("language %s is not supported for PAWS-X task." %
language)
else:
self.languages = [language]
def get_train_examples(self, data_dir):
"""See base class."""
lines = []
for language in self.languages:
if language == "en":
train_tsv = "train.tsv"
else:
train_tsv = "translated_train.tsv"
# Skips the header.
lines.extend(
self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
examples = []
for (i, line) in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = []
for lang in PawsxProcessor.supported_languages:
lines.extend(self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv")))
examples = []
for (i, line) in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {k: [] for k in self.supported_languages}
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
for (i, line) in enumerate(lines):
guid = "test-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-PAWS-X"
class XtremePawsxProcessor(DataProcessor):
"""Processor for the XTREME PAWS-X data set."""
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
def get_train_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
examples = []
for (i, line) in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
examples = []
for (i, line) in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {k: [] for k in self.supported_languages}
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
for (i, line) in enumerate(lines):
guid = "test-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = "0"
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-PAWS-X"
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
"dev_matched")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "MNLI"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
text_a = self.process_text_fn(line[8])
text_b = self.process_text_fn(line[9])
if set_type == "test":
label = "contradiction"
else:
label = self.process_text_fn(line[-1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "MRPC"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = self.process_text_fn(line[3])
text_b = self.process_text_fn(line[4])
if set_type == "test":
label = "0"
else:
label = self.process_text_fn(line[0])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class QqpProcessor(DataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "QQP"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
try:
text_a = line[3]
text_b = line[4]
label = line[5]
except IndexError:
continue
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "COLA"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
# Only the test set has a header
if set_type == "test" and i == 0:
continue
guid = "%s-%s" % (set_type, i)
if set_type == "test":
text_a = self.process_text_fn(line[1])
label = "0"
else:
text_a = self.process_text_fn(line[3])
label = self.process_text_fn(line[1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class RteProcessor(DataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
# All datasets are converted to 2-class split, where for 3-class datasets we
# collapse neutral and contradiction into not_entailment.
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "RTE"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
if set_type == "test":
text_a = tokenization.convert_to_unicode(line[1])
text_b = tokenization.convert_to_unicode(line[2])
label = "entailment"
else:
text_a = tokenization.convert_to_unicode(line[1])
text_b = tokenization.convert_to_unicode(line[2])
label = tokenization.convert_to_unicode(line[3])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class SstProcessor(DataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "SST-2"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
if set_type == "test":
text_a = tokenization.convert_to_unicode(line[1])
label = "0"
else:
text_a = tokenization.convert_to_unicode(line[0])
label = tokenization.convert_to_unicode(line[1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class QnliProcessor(DataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "QNLI"
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, 1)
if set_type == "test":
text_a = tokenization.convert_to_unicode(line[1])
text_b = tokenization.convert_to_unicode(line[2])
label = "entailment"
else:
text_a = tokenization.convert_to_unicode(line[1])
text_b = tokenization.convert_to_unicode(line[2])
label = tokenization.convert_to_unicode(line[-1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class TfdsProcessor(DataProcessor):
"""Processor for generic text classification and regression TFDS data set.
The TFDS parameters are expected to be provided in the tfds_params string, in
a comma-separated list of parameter assignments.
Examples:
tfds_params="dataset=scicite,text_key=string"
tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
tfds_params="dataset=glue/cola,text_key=sentence"
tfds_params="dataset=glue/sst2,text_key=sentence"
tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
"is_regression=true,label_type=float"
Possible parameters (please refer to the documentation of Tensorflow Datasets
(TFDS) for the meaning of individual parameters):
dataset: Required dataset name (potentially with subset and version number).
data_dir: Optional TFDS source root directory.
module_import: Optional Dataset module to import.
train_split: Name of the train split (defaults to `train`).
dev_split: Name of the dev split (defaults to `validation`).
test_split: Name of the test split (defaults to `test`).
text_key: Key of the text_a feature (defaults to `text`).
text_b_key: Key of the second text feature if available.
label_key: Key of the label feature (defaults to `label`).
test_text_key: Key of the text feature to use in test set.
test_text_b_key: Key of the second text feature to use in test set.
test_label: String to be used as the label for all test examples.
label_type: Type of the label key (defaults to `int`).
weight_key: Key of the float sample weight (is not used if not provided).
is_regression: Whether the task is a regression problem (defaults to False).
"""
def __init__(self,
tfds_params,
process_text_fn=tokenization.convert_to_unicode):
super(TfdsProcessor, self).__init__(process_text_fn)
self._process_tfds_params_str(tfds_params)
if self.module_import:
importlib.import_module(self.module_import)
self.dataset, info = tfds.load(
self.dataset_name, data_dir=self.data_dir, with_info=True)
if self.is_regression:
self._labels = None
else:
self._labels = list(range(info.features[self.label_key].num_classes))
def _process_tfds_params_str(self, params_str):
"""Extracts TFDS parameters from a comma-separated assignements string."""
dtype_map = {"int": int, "float": float}
cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]
tuples = [x.split("=") for x in params_str.split(",")]
d = {k.strip(): v.strip() for k, v in tuples}
self.dataset_name = d["dataset"] # Required.
self.data_dir = d.get("data_dir", None)
self.module_import = d.get("module_import", None)
self.train_split = d.get("train_split", "train")
self.dev_split = d.get("dev_split", "validation")
self.test_split = d.get("test_split", "test")
self.text_key = d.get("text_key", "text")
self.text_b_key = d.get("text_b_key", None)
self.label_key = d.get("label_key", "label")
self.test_text_key = d.get("test_text_key", self.text_key)
self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
self.test_label = d.get("test_label", "test_example")
self.label_type = dtype_map[d.get("label_type", "int")]
self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
self.weight_key = d.get("weight_key", None)
def get_train_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.train_split, "train")
def get_dev_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.dev_split, "dev")
def get_test_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.test_split, "test")
def get_labels(self):
return self._labels
def get_processor_name(self):
return "TFDS_" + self.dataset_name
def _create_examples(self, split_name, set_type):
"""Creates examples for the training and dev sets."""
if split_name not in self.dataset:
raise ValueError("Split {} not available.".format(split_name))
dataset = self.dataset[split_name].as_numpy_iterator()
examples = []
text_b, weight = None, None
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
if set_type == "test":
text_a = self.process_text_fn(example[self.test_text_key])
if self.test_text_b_key:
text_b = self.process_text_fn(example[self.test_text_b_key])
label = self.test_label
else:
text_a = self.process_text_fn(example[self.text_key])
if self.text_b_key:
text_b = self.process_text_fn(example[self.text_b_key])
label = self.label_type(example[self.label_key])
if self.weight_key:
weight = float(example[self.weight_key])
examples.append(
InputExample(
guid=guid,
text_a=text_a,
text_b=text_b,
label=label,
weight=weight))
return examples
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`."""
label_map = {}
if label_list:
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label] if label_map else example.label
if ex_index < 5:
logging.info("*** Example ***")
logging.info("guid: %s", (example.guid))
logging.info("tokens: %s",
" ".join([tokenization.printable_text(x) for x in tokens]))
logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
logging.info("label: %s (id = %s)", example.label, str(label_id))
logging.info("weight: %s", example.weight)
logging.info("int_iden: %s", str(example.int_iden))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True,
weight=example.weight,
int_iden=example.int_iden)
return feature
def file_based_convert_examples_to_features(examples,
label_list,
max_seq_length,
tokenizer,
output_file,
label_type=None):
"""Convert a set of `InputExample`s to a TFRecord file."""
tf.io.gfile.makedirs(os.path.dirname(output_file))
writer = tf.io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logging.info("Writing example %d of %d", ex_index, len(examples))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if label_type is not None and label_type == float:
features["label_ids"] = create_float_feature([feature.label_id])
elif feature.label_id is not None:
features["label_ids"] = create_int_feature([feature.label_id])
features["is_real_example"] = create_int_feature(
[int(feature.is_real_example)])
if feature.weight is not None:
features["weight"] = create_float_feature([feature.weight])
if feature.int_iden is not None:
features["int_iden"] = create_int_feature([feature.int_iden])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def generate_tf_record_from_data_file(processor,
data_dir,
tokenizer,
train_data_output_path=None,
eval_data_output_path=None,
test_data_output_path=None,
max_seq_length=128):
"""Generates and saves training data into a tf record file.
Arguments:
processor: Input processor object to be used for generating data. Subclass
of `DataProcessor`.
data_dir: Directory that contains train/eval data to process. Data files
should be in from "dev.tsv", "test.tsv", or "train.tsv".
tokenizer: The tokenizer to be applied on the data.
train_data_output_path: Output to which processed tf record for training
will be saved.
eval_data_output_path: Output to which processed tf record for evaluation
will be saved.
test_data_output_path: Output to which processed tf record for testing
will be saved. Must be a pattern template with {} if processor has
language specific test data.
max_seq_length: Maximum sequence length of the to be generated
training/eval data.
Returns:
A dictionary containing input meta data.
"""
assert train_data_output_path or eval_data_output_path
label_list = processor.get_labels()
label_type = getattr(processor, "label_type", None)
is_regression = getattr(processor, "is_regression", False)
has_sample_weights = getattr(processor, "weight_key", False)
assert train_data_output_path
train_input_data_examples = processor.get_train_examples(data_dir)
file_based_convert_examples_to_features(train_input_data_examples, label_list,
max_seq_length, tokenizer,
train_data_output_path, label_type)
num_training_data = len(train_input_data_examples)
if eval_data_output_path:
eval_input_data_examples = processor.get_dev_examples(data_dir)
file_based_convert_examples_to_features(eval_input_data_examples,
label_list, max_seq_length,
tokenizer, eval_data_output_path,
label_type)
if test_data_output_path:
test_input_data_examples = processor.get_test_examples(data_dir)
if isinstance(test_input_data_examples, dict):
for language, examples in test_input_data_examples.items():
file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer,
test_data_output_path.format(language), label_type)
else:
file_based_convert_examples_to_features(test_input_data_examples,
label_list, max_seq_length,
tokenizer, test_data_output_path,
label_type)
meta_data = {
"processor_type": processor.get_processor_name(),
"train_data_size": num_training_data,
"max_seq_length": max_seq_length,
}
if is_regression:
meta_data["task_type"] = "bert_regression"
meta_data["label_type"] = {int: "int", float: "float"}[label_type]
else:
meta_data["task_type"] = "bert_classification"
meta_data["num_labels"] = len(processor.get_labels())
if has_sample_weights:
meta_data["has_sample_weights"] = True
if eval_data_output_path:
meta_data["eval_data_size"] = len(eval_input_data_examples)
if test_data_output_path:
test_input_data_examples = processor.get_test_examples(data_dir)
if isinstance(test_input_data_examples, dict):
for language, examples in test_input_data_examples.items():
meta_data["test_{}_data_size".format(language)] = len(examples)
else:
meta_data["test_data_size"] = len(test_input_data_examples)
return meta_data
|