File size: 31,764 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run ALBERT on SQuAD 1.1 and SQuAD 2.0 using sentence piece tokenization.

The file is forked from:

https://github.com/google-research/ALBERT/blob/master/run_squad_sp.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import copy
import json
import math
import os
from absl import logging
import numpy as np
import tensorflow as tf

from official.nlp.bert import tokenization


class SquadExample(object):
  """A single training/test example for simple sequence classification.

     For examples without an answer, the start and end position are -1.
  """

  def __init__(self,
               qas_id,
               question_text,
               paragraph_text,
               orig_answer_text=None,
               start_position=None,
               end_position=None,
               is_impossible=False):
    self.qas_id = qas_id
    self.question_text = question_text
    self.paragraph_text = paragraph_text
    self.orig_answer_text = orig_answer_text
    self.start_position = start_position
    self.end_position = end_position
    self.is_impossible = is_impossible

  def __str__(self):
    return self.__repr__()

  def __repr__(self):
    s = ""
    s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
    s += ", question_text: %s" % (
        tokenization.printable_text(self.question_text))
    s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text))
    if self.start_position:
      s += ", start_position: %d" % (self.start_position)
    if self.start_position:
      s += ", end_position: %d" % (self.end_position)
    if self.start_position:
      s += ", is_impossible: %r" % (self.is_impossible)
    return s


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               unique_id,
               example_index,
               doc_span_index,
               tok_start_to_orig_index,
               tok_end_to_orig_index,
               token_is_max_context,
               tokens,
               input_ids,
               input_mask,
               segment_ids,
               paragraph_len,
               start_position=None,
               end_position=None,
               is_impossible=None):
    self.unique_id = unique_id
    self.example_index = example_index
    self.doc_span_index = doc_span_index
    self.tok_start_to_orig_index = tok_start_to_orig_index
    self.tok_end_to_orig_index = tok_end_to_orig_index
    self.token_is_max_context = token_is_max_context
    self.tokens = tokens
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.paragraph_len = paragraph_len
    self.start_position = start_position
    self.end_position = end_position
    self.is_impossible = is_impossible


def read_squad_examples(input_file, is_training, version_2_with_negative):
  """Read a SQuAD json file into a list of SquadExample."""
  del version_2_with_negative
  with tf.io.gfile.GFile(input_file, "r") as reader:
    input_data = json.load(reader)["data"]

  examples = []
  for entry in input_data:
    for paragraph in entry["paragraphs"]:
      paragraph_text = paragraph["context"]

      for qa in paragraph["qas"]:
        qas_id = qa["id"]
        question_text = qa["question"]
        start_position = None
        orig_answer_text = None
        is_impossible = False

        if is_training:
          is_impossible = qa.get("is_impossible", False)
          if (len(qa["answers"]) != 1) and (not is_impossible):
            raise ValueError(
                "For training, each question should have exactly 1 answer.")
          if not is_impossible:
            answer = qa["answers"][0]
            orig_answer_text = answer["text"]
            start_position = answer["answer_start"]
          else:
            start_position = -1
            orig_answer_text = ""

        example = SquadExample(
            qas_id=qas_id,
            question_text=question_text,
            paragraph_text=paragraph_text,
            orig_answer_text=orig_answer_text,
            start_position=start_position,
            is_impossible=is_impossible)
        examples.append(example)

  return examples


def _convert_index(index, pos, m=None, is_start=True):
  """Converts index."""
  if index[pos] is not None:
    return index[pos]
  n = len(index)
  rear = pos
  while rear < n - 1 and index[rear] is None:
    rear += 1
  front = pos
  while front > 0 and index[front] is None:
    front -= 1
  assert index[front] is not None or index[rear] is not None
  if index[front] is None:
    if index[rear] >= 1:
      if is_start:
        return 0
      else:
        return index[rear] - 1
    return index[rear]
  if index[rear] is None:
    if m is not None and index[front] < m - 1:
      if is_start:
        return index[front] + 1
      else:
        return m - 1
    return index[front]
  if is_start:
    if index[rear] > index[front] + 1:
      return index[front] + 1
    else:
      return index[rear]
  else:
    if index[rear] > index[front] + 1:
      return index[rear] - 1
    else:
      return index[front]


def convert_examples_to_features(examples,
                                 tokenizer,
                                 max_seq_length,
                                 doc_stride,
                                 max_query_length,
                                 is_training,
                                 output_fn,
                                 do_lower_case,
                                 batch_size=None):
  """Loads a data file into a list of `InputBatch`s."""
  cnt_pos, cnt_neg = 0, 0
  base_id = 1000000000
  unique_id = base_id
  max_n, max_m = 1024, 1024
  f = np.zeros((max_n, max_m), dtype=np.float32)

  for (example_index, example) in enumerate(examples):

    if example_index % 100 == 0:
      logging.info("Converting %d/%d pos %d neg %d", example_index,
                   len(examples), cnt_pos, cnt_neg)

    query_tokens = tokenization.encode_ids(
        tokenizer.sp_model,
        tokenization.preprocess_text(
            example.question_text, lower=do_lower_case))

    if len(query_tokens) > max_query_length:
      query_tokens = query_tokens[0:max_query_length]

    paragraph_text = example.paragraph_text
    para_tokens = tokenization.encode_pieces(
        tokenizer.sp_model,
        tokenization.preprocess_text(
            example.paragraph_text, lower=do_lower_case))

    chartok_to_tok_index = []
    tok_start_to_chartok_index = []
    tok_end_to_chartok_index = []
    char_cnt = 0
    for i, token in enumerate(para_tokens):
      new_token = token.replace(tokenization.SPIECE_UNDERLINE, " ")
      chartok_to_tok_index.extend([i] * len(new_token))
      tok_start_to_chartok_index.append(char_cnt)
      char_cnt += len(new_token)
      tok_end_to_chartok_index.append(char_cnt - 1)

    tok_cat_text = "".join(para_tokens).replace(tokenization.SPIECE_UNDERLINE,
                                                " ")
    n, m = len(paragraph_text), len(tok_cat_text)

    if n > max_n or m > max_m:
      max_n = max(n, max_n)
      max_m = max(m, max_m)
      f = np.zeros((max_n, max_m), dtype=np.float32)

    g = {}
    # pylint: disable=cell-var-from-loop
    def _lcs_match(max_dist, n=n, m=m):
      """Longest-common-substring algorithm."""
      f.fill(0)
      g.clear()

      ### longest common sub sequence
      # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
      for i in range(n):

        # unlike standard LCS, this is specifically optimized for the setting
        # because the mismatch between sentence pieces and original text will
        # be small
        for j in range(i - max_dist, i + max_dist):
          if j >= m or j < 0:
            continue

          if i > 0:
            g[(i, j)] = 0
            f[i, j] = f[i - 1, j]

          if j > 0 and f[i, j - 1] > f[i, j]:
            g[(i, j)] = 1
            f[i, j] = f[i, j - 1]

          f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
          if (tokenization.preprocess_text(
              paragraph_text[i], lower=do_lower_case,
              remove_space=False) == tok_cat_text[j] and f_prev + 1 > f[i, j]):
            g[(i, j)] = 2
            f[i, j] = f_prev + 1
    # pylint: enable=cell-var-from-loop

    max_dist = abs(n - m) + 5
    for _ in range(2):
      _lcs_match(max_dist)
      if f[n - 1, m - 1] > 0.8 * n:
        break
      max_dist *= 2

    orig_to_chartok_index = [None] * n
    chartok_to_orig_index = [None] * m
    i, j = n - 1, m - 1
    while i >= 0 and j >= 0:
      if (i, j) not in g:
        break
      if g[(i, j)] == 2:
        orig_to_chartok_index[i] = j
        chartok_to_orig_index[j] = i
        i, j = i - 1, j - 1
      elif g[(i, j)] == 1:
        j = j - 1
      else:
        i = i - 1

    if (all(v is None for v in orig_to_chartok_index) or
        f[n - 1, m - 1] < 0.8 * n):
      logging.info("MISMATCH DETECTED!")
      continue

    tok_start_to_orig_index = []
    tok_end_to_orig_index = []
    for i in range(len(para_tokens)):
      start_chartok_pos = tok_start_to_chartok_index[i]
      end_chartok_pos = tok_end_to_chartok_index[i]
      start_orig_pos = _convert_index(
          chartok_to_orig_index, start_chartok_pos, n, is_start=True)
      end_orig_pos = _convert_index(
          chartok_to_orig_index, end_chartok_pos, n, is_start=False)

      tok_start_to_orig_index.append(start_orig_pos)
      tok_end_to_orig_index.append(end_orig_pos)

    if not is_training:
      tok_start_position = tok_end_position = None

    if is_training and example.is_impossible:
      tok_start_position = 0
      tok_end_position = 0

    if is_training and not example.is_impossible:
      start_position = example.start_position
      end_position = start_position + len(example.orig_answer_text) - 1

      start_chartok_pos = _convert_index(
          orig_to_chartok_index, start_position, is_start=True)
      tok_start_position = chartok_to_tok_index[start_chartok_pos]

      end_chartok_pos = _convert_index(
          orig_to_chartok_index, end_position, is_start=False)
      tok_end_position = chartok_to_tok_index[end_chartok_pos]
      assert tok_start_position <= tok_end_position

    def _piece_to_id(x):
      return tokenizer.sp_model.PieceToId(x)

    all_doc_tokens = list(map(_piece_to_id, para_tokens))

    # The -3 accounts for [CLS], [SEP] and [SEP]
    max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

    # We can have documents that are longer than the maximum sequence length.
    # To deal with this we do a sliding window approach, where we take chunks
    # of the up to our max length with a stride of `doc_stride`.
    _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
        "DocSpan", ["start", "length"])
    doc_spans = []
    start_offset = 0
    while start_offset < len(all_doc_tokens):
      length = len(all_doc_tokens) - start_offset
      if length > max_tokens_for_doc:
        length = max_tokens_for_doc
      doc_spans.append(_DocSpan(start=start_offset, length=length))
      if start_offset + length == len(all_doc_tokens):
        break
      start_offset += min(length, doc_stride)

    for (doc_span_index, doc_span) in enumerate(doc_spans):
      tokens = []
      token_is_max_context = {}
      segment_ids = []

      cur_tok_start_to_orig_index = []
      cur_tok_end_to_orig_index = []

      tokens.append(tokenizer.sp_model.PieceToId("[CLS]"))
      segment_ids.append(0)
      for token in query_tokens:
        tokens.append(token)
        segment_ids.append(0)
      tokens.append(tokenizer.sp_model.PieceToId("[SEP]"))
      segment_ids.append(0)

      for i in range(doc_span.length):
        split_token_index = doc_span.start + i

        cur_tok_start_to_orig_index.append(
            tok_start_to_orig_index[split_token_index])
        cur_tok_end_to_orig_index.append(
            tok_end_to_orig_index[split_token_index])

        is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                               split_token_index)
        token_is_max_context[len(tokens)] = is_max_context
        tokens.append(all_doc_tokens[split_token_index])
        segment_ids.append(1)
      tokens.append(tokenizer.sp_model.PieceToId("[SEP]"))
      segment_ids.append(1)

      paragraph_len = len(tokens)
      input_ids = tokens

      # The mask has 1 for real tokens and 0 for padding tokens. Only real
      # tokens are attended to.
      input_mask = [1] * len(input_ids)

      # Zero-pad up to the sequence length.
      while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

      assert len(input_ids) == max_seq_length
      assert len(input_mask) == max_seq_length
      assert len(segment_ids) == max_seq_length

      span_is_impossible = example.is_impossible
      start_position = None
      end_position = None
      if is_training and not span_is_impossible:
        # For training, if our document chunk does not contain an annotation
        # we throw it out, since there is nothing to predict.
        doc_start = doc_span.start
        doc_end = doc_span.start + doc_span.length - 1
        out_of_span = False
        if not (tok_start_position >= doc_start and
                tok_end_position <= doc_end):
          out_of_span = True
        if out_of_span:
          # continue
          start_position = 0
          end_position = 0
          span_is_impossible = True
        else:
          doc_offset = len(query_tokens) + 2
          start_position = tok_start_position - doc_start + doc_offset
          end_position = tok_end_position - doc_start + doc_offset

      if is_training and span_is_impossible:
        start_position = 0
        end_position = 0

      if example_index < 20:
        logging.info("*** Example ***")
        logging.info("unique_id: %s", (unique_id))
        logging.info("example_index: %s", (example_index))
        logging.info("doc_span_index: %s", (doc_span_index))
        logging.info("tok_start_to_orig_index: %s",
                     " ".join([str(x) for x in cur_tok_start_to_orig_index]))
        logging.info("tok_end_to_orig_index: %s",
                     " ".join([str(x) for x in cur_tok_end_to_orig_index]))
        logging.info(
            "token_is_max_context: %s", " ".join(
                ["%d:%s" % (x, y) for (x, y) in token_is_max_context.items()]))
        logging.info(
            "input_pieces: %s",
            " ".join([tokenizer.sp_model.IdToPiece(x) for x in tokens]))
        logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
        logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
        logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))

        if is_training and span_is_impossible:
          logging.info("impossible example span")

        if is_training and not span_is_impossible:
          pieces = [
              tokenizer.sp_model.IdToPiece(token)
              for token in tokens[start_position:(end_position + 1)]
          ]
          answer_text = tokenizer.sp_model.DecodePieces(pieces)
          logging.info("start_position: %d", (start_position))
          logging.info("end_position: %d", (end_position))
          logging.info("answer: %s", (tokenization.printable_text(answer_text)))

          # With multi processing, the example_index is actually the index
          # within the current process therefore we use example_index=None
          # to avoid being used in the future.
          # The current code does not use example_index of training data.
      if is_training:
        feat_example_index = None
      else:
        feat_example_index = example_index

      feature = InputFeatures(
          unique_id=unique_id,
          example_index=feat_example_index,
          doc_span_index=doc_span_index,
          tok_start_to_orig_index=cur_tok_start_to_orig_index,
          tok_end_to_orig_index=cur_tok_end_to_orig_index,
          token_is_max_context=token_is_max_context,
          tokens=[tokenizer.sp_model.IdToPiece(x) for x in tokens],
          input_ids=input_ids,
          input_mask=input_mask,
          segment_ids=segment_ids,
          paragraph_len=paragraph_len,
          start_position=start_position,
          end_position=end_position,
          is_impossible=span_is_impossible)

      # Run callback
      if is_training:
        output_fn(feature)
      else:
        output_fn(feature, is_padding=False)

      unique_id += 1
      if span_is_impossible:
        cnt_neg += 1
      else:
        cnt_pos += 1

  if not is_training and feature:
    assert batch_size
    num_padding = 0
    num_examples = unique_id - base_id
    if unique_id % batch_size != 0:
      num_padding = batch_size - (num_examples % batch_size)
    dummy_feature = copy.deepcopy(feature)
    for _ in range(num_padding):
      dummy_feature.unique_id = unique_id

      # Run callback
      output_fn(feature, is_padding=True)
      unique_id += 1

  logging.info("Total number of instances: %d = pos %d neg %d",
               cnt_pos + cnt_neg, cnt_pos, cnt_neg)
  return unique_id - base_id


def _check_is_max_context(doc_spans, cur_span_index, position):
  """Check if this is the 'max context' doc span for the token."""

  # Because of the sliding window approach taken to scoring documents, a single
  # token can appear in multiple documents. E.g.
  #  Doc: the man went to the store and bought a gallon of milk
  #  Span A: the man went to the
  #  Span B: to the store and bought
  #  Span C: and bought a gallon of
  #  ...
  #
  # Now the word 'bought' will have two scores from spans B and C. We only
  # want to consider the score with "maximum context", which we define as
  # the *minimum* of its left and right context (the *sum* of left and
  # right context will always be the same, of course).
  #
  # In the example the maximum context for 'bought' would be span C since
  # it has 1 left context and 3 right context, while span B has 4 left context
  # and 0 right context.
  best_score = None
  best_span_index = None
  for (span_index, doc_span) in enumerate(doc_spans):
    end = doc_span.start + doc_span.length - 1
    if position < doc_span.start:
      continue
    if position > end:
      continue
    num_left_context = position - doc_span.start
    num_right_context = end - position
    score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
    if best_score is None or score > best_score:
      best_score = score
      best_span_index = span_index

  return cur_span_index == best_span_index


def write_predictions(all_examples,
                      all_features,
                      all_results,
                      n_best_size,
                      max_answer_length,
                      do_lower_case,
                      output_prediction_file,
                      output_nbest_file,
                      output_null_log_odds_file,
                      version_2_with_negative=False,
                      null_score_diff_threshold=0.0,
                      verbose=False):
  """Write final predictions to the json file and log-odds of null if needed."""
  logging.info("Writing predictions to: %s", (output_prediction_file))
  logging.info("Writing nbest to: %s", (output_nbest_file))

  all_predictions, all_nbest_json, scores_diff_json = (
      postprocess_output(all_examples=all_examples,
                         all_features=all_features,
                         all_results=all_results,
                         n_best_size=n_best_size,
                         max_answer_length=max_answer_length,
                         do_lower_case=do_lower_case,
                         version_2_with_negative=version_2_with_negative,
                         null_score_diff_threshold=null_score_diff_threshold,
                         verbose=verbose))

  write_to_json_files(all_predictions, output_prediction_file)
  write_to_json_files(all_nbest_json, output_nbest_file)
  if version_2_with_negative:
    write_to_json_files(scores_diff_json, output_null_log_odds_file)


def postprocess_output(all_examples,
                       all_features,
                       all_results,
                       n_best_size,
                       max_answer_length,
                       do_lower_case,
                       version_2_with_negative=False,
                       null_score_diff_threshold=0.0,
                       verbose=False):
  """Postprocess model output, to form predicton results."""

  del do_lower_case, verbose

  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
      "PrelimPrediction",
      ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    features = example_index_to_features[example_index]

    prelim_predictions = []
    # keep track of the minimum score of null start+end of position 0
    score_null = 1000000  # large and positive
    min_null_feature_index = 0  # the paragraph slice with min mull score
    null_start_logit = 0  # the start logit at the slice with min null score
    null_end_logit = 0  # the end logit at the slice with min null score
    for (feature_index, feature) in enumerate(features):
      result = unique_id_to_result[feature.unique_id]
      start_indexes = _get_best_indexes(result.start_logits, n_best_size)
      end_indexes = _get_best_indexes(result.end_logits, n_best_size)
      # if we could have irrelevant answers, get the min score of irrelevant
      if version_2_with_negative:
        feature_null_score = result.start_logits[0] + result.end_logits[0]
        if feature_null_score < score_null:
          score_null = feature_null_score
          min_null_feature_index = feature_index
          null_start_logit = result.start_logits[0]
          null_end_logit = result.end_logits[0]
      for start_index in start_indexes:
        for end_index in end_indexes:
          doc_offset = feature.tokens.index("[SEP]") + 1
          # We could hypothetically create invalid predictions, e.g., predict
          # that the start of the span is in the question. We throw out all
          # invalid predictions.
          if start_index - doc_offset >= len(feature.tok_start_to_orig_index):
            continue
          if end_index - doc_offset >= len(feature.tok_end_to_orig_index):
            continue
          # if start_index not in feature.tok_start_to_orig_index:
          #   continue
          # if end_index not in feature.tok_end_to_orig_index:
          #   continue
          if not feature.token_is_max_context.get(start_index, False):
            continue
          if end_index < start_index:
            continue
          length = end_index - start_index + 1
          if length > max_answer_length:
            continue
          prelim_predictions.append(
              _PrelimPrediction(
                  feature_index=feature_index,
                  start_index=start_index - doc_offset,
                  end_index=end_index - doc_offset,
                  start_logit=result.start_logits[start_index],
                  end_logit=result.end_logits[end_index]))

    if version_2_with_negative:
      prelim_predictions.append(
          _PrelimPrediction(
              feature_index=min_null_feature_index,
              start_index=-1,
              end_index=-1,
              start_logit=null_start_logit,
              end_logit=null_end_logit))
    prelim_predictions = sorted(
        prelim_predictions,
        key=lambda x: (x.start_logit + x.end_logit),
        reverse=True)

    _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "NbestPrediction", ["text", "start_logit", "end_logit"])

    seen_predictions = {}
    nbest = []
    for pred in prelim_predictions:
      if len(nbest) >= n_best_size:
        break
      feature = features[pred.feature_index]
      if pred.start_index >= 0:  # this is a non-null prediction
        tok_start_to_orig_index = feature.tok_start_to_orig_index
        tok_end_to_orig_index = feature.tok_end_to_orig_index
        start_orig_pos = tok_start_to_orig_index[pred.start_index]
        end_orig_pos = tok_end_to_orig_index[pred.end_index]

        paragraph_text = example.paragraph_text
        final_text = paragraph_text[start_orig_pos:end_orig_pos + 1].strip()
        if final_text in seen_predictions:
          continue

        seen_predictions[final_text] = True
      else:
        final_text = ""
        seen_predictions[final_text] = True

      nbest.append(
          _NbestPrediction(
              text=final_text,
              start_logit=pred.start_logit,
              end_logit=pred.end_logit))

    # if we didn't inlude the empty option in the n-best, inlcude it
    if version_2_with_negative:
      if "" not in seen_predictions:
        nbest.append(
            _NbestPrediction(
                text="", start_logit=null_start_logit,
                end_logit=null_end_logit))
    # In very rare edge cases we could have no valid predictions. So we
    # just create a nonce prediction in this case to avoid failure.
    if not nbest:
      nbest.append(
          _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

    assert len(nbest) >= 1

    total_scores = []
    best_non_null_entry = None
    for entry in nbest:
      total_scores.append(entry.start_logit + entry.end_logit)
      if not best_non_null_entry:
        if entry.text:
          best_non_null_entry = entry

    probs = _compute_softmax(total_scores)

    nbest_json = []
    for (i, entry) in enumerate(nbest):
      output = collections.OrderedDict()
      output["text"] = entry.text
      output["probability"] = probs[i]
      output["start_logit"] = entry.start_logit
      output["end_logit"] = entry.end_logit
      nbest_json.append(output)

    assert len(nbest_json) >= 1

    if not version_2_with_negative:
      all_predictions[example.qas_id] = nbest_json[0]["text"]
    else:
      assert best_non_null_entry is not None
      # predict "" iff the null score - the score of best non-null > threshold
      score_diff = score_null - best_non_null_entry.start_logit - (
          best_non_null_entry.end_logit)
      scores_diff_json[example.qas_id] = score_diff
      if score_diff > null_score_diff_threshold:
        all_predictions[example.qas_id] = ""
      else:
        all_predictions[example.qas_id] = best_non_null_entry.text

    all_nbest_json[example.qas_id] = nbest_json

  return all_predictions, all_nbest_json, scores_diff_json


def write_to_json_files(json_records, json_file):
  with tf.io.gfile.GFile(json_file, "w") as writer:
    writer.write(json.dumps(json_records, indent=4) + "\n")


def _get_best_indexes(logits, n_best_size):
  """Get the n-best logits from a list."""
  index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)

  best_indexes = []
  for i in range(len(index_and_score)):
    if i >= n_best_size:
      break
    best_indexes.append(index_and_score[i][0])
  return best_indexes


def _compute_softmax(scores):
  """Compute softmax probability over raw logits."""
  if not scores:
    return []

  max_score = None
  for score in scores:
    if max_score is None or score > max_score:
      max_score = score

  exp_scores = []
  total_sum = 0.0
  for score in scores:
    x = math.exp(score - max_score)
    exp_scores.append(x)
    total_sum += x

  probs = []
  for score in exp_scores:
    probs.append(score / total_sum)
  return probs


class FeatureWriter(object):
  """Writes InputFeature to TF example file."""

  def __init__(self, filename, is_training):
    self.filename = filename
    self.is_training = is_training
    self.num_features = 0
    tf.io.gfile.makedirs(os.path.dirname(filename))
    self._writer = tf.io.TFRecordWriter(filename)

  def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)

    if self.is_training:
      features["start_positions"] = create_int_feature([feature.start_position])
      features["end_positions"] = create_int_feature([feature.end_position])
      impossible = 0
      if feature.is_impossible:
        impossible = 1
      features["is_impossible"] = create_int_feature([impossible])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString())

  def close(self):
    self._writer.close()


def generate_tf_record_from_json_file(input_file_path,
                                      sp_model_file,
                                      output_path,
                                      max_seq_length=384,
                                      do_lower_case=True,
                                      max_query_length=64,
                                      doc_stride=128,
                                      version_2_with_negative=False):
  """Generates and saves training data into a tf record file."""
  train_examples = read_squad_examples(
      input_file=input_file_path,
      is_training=True,
      version_2_with_negative=version_2_with_negative)
  tokenizer = tokenization.FullSentencePieceTokenizer(
      sp_model_file=sp_model_file)
  train_writer = FeatureWriter(filename=output_path, is_training=True)
  number_of_examples = convert_examples_to_features(
      examples=train_examples,
      tokenizer=tokenizer,
      max_seq_length=max_seq_length,
      doc_stride=doc_stride,
      max_query_length=max_query_length,
      is_training=True,
      output_fn=train_writer.process_feature,
      do_lower_case=do_lower_case)
  train_writer.close()

  meta_data = {
      "task_type": "bert_squad",
      "train_data_size": number_of_examples,
      "max_seq_length": max_seq_length,
      "max_query_length": max_query_length,
      "doc_stride": doc_stride,
      "version_2_with_negative": version_2_with_negative,
  }

  return meta_data