File size: 7,153 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based einsum layer."""
# pylint: disable=g-classes-have-attributes
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import tensorflow as tf

_CHR_IDX = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m"]


@tf.keras.utils.register_keras_serializable(package="Text")
class DenseEinsum(tf.keras.layers.Layer):
  """A densely connected layer that uses tf.einsum as the backing computation.

  This layer can perform einsum calculations of arbitrary dimensionality.

  Arguments:
    output_shape: Positive integer or tuple, dimensionality of the output space.
    num_summed_dimensions: The number of dimensions to sum over. Standard 2D
      matmul should use 1, 3D matmul should use 2, and so forth.
    activation: Activation function to use. If you don't specify anything, no
      activation is applied
      (ie. "linear" activation: `a(x) = x`).
    use_bias: Boolean, whether the layer uses a bias vector.
    kernel_initializer: Initializer for the `kernel` weights matrix.
    bias_initializer: Initializer for the bias vector.
    kernel_regularizer: Regularizer function applied to the `kernel` weights
      matrix.
    bias_regularizer: Regularizer function applied to the bias vector.
    activity_regularizer: Regularizer function applied to the output of the
      layer (its "activation")..
    kernel_constraint: Constraint function applied to the `kernel` weights
      matrix.
    bias_constraint: Constraint function applied to the bias vector.
  Input shape:
    N-D tensor with shape: `(batch_size, ..., input_dim)`. The most common
      situation would be a 2D input with shape `(batch_size, input_dim)`.
  Output shape:
    N-D tensor with shape: `(batch_size, ..., units)`. For instance, for a 2D
      input with shape `(batch_size, input_dim)`, the output would have shape
      `(batch_size, units)`.
  """

  def __init__(self,
               output_shape,
               num_summed_dimensions=1,
               activation=None,
               use_bias=True,
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    super(DenseEinsum, self).__init__(**kwargs)
    self._output_shape = output_shape if isinstance(
        output_shape, (list, tuple)) else (output_shape,)
    self._activation = tf.keras.activations.get(activation)
    self._use_bias = use_bias
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
    self._num_summed_dimensions = num_summed_dimensions
    self._einsum_string = None

  def _build_einsum_string(self, free_input_dims, bound_dims, output_dims):
    input_str = ""
    kernel_str = ""
    output_str = ""
    letter_offset = 0
    for i in range(free_input_dims):
      char = _CHR_IDX[i + letter_offset]
      input_str += char
      output_str += char

    letter_offset += free_input_dims
    for i in range(bound_dims):
      char = _CHR_IDX[i + letter_offset]
      input_str += char
      kernel_str += char

    letter_offset += bound_dims
    for i in range(output_dims):
      char = _CHR_IDX[i + letter_offset]
      kernel_str += char
      output_str += char

    return input_str + "," + kernel_str + "->" + output_str

  def build(self, input_shape):
    input_shape = tf.TensorShape(input_shape)
    input_rank = input_shape.rank
    free_input_dims = input_rank - self._num_summed_dimensions
    output_dims = len(self._output_shape)

    self._einsum_string = self._build_einsum_string(free_input_dims,
                                                    self._num_summed_dimensions,
                                                    output_dims)

    # This is only saved for testing purposes.
    self._kernel_shape = (
        input_shape[free_input_dims:].concatenate(self._output_shape))

    self._kernel = self.add_weight(
        "kernel",
        shape=self._kernel_shape,
        initializer=self._kernel_initializer,
        regularizer=self._kernel_regularizer,
        constraint=self._kernel_constraint,
        dtype=self.dtype,
        trainable=True)
    if self._use_bias:
      self._bias = self.add_weight(
          "bias",
          shape=self._output_shape,
          initializer=self._bias_initializer,
          regularizer=self._bias_regularizer,
          constraint=self._bias_constraint,
          dtype=self.dtype,
          trainable=True)
    else:
      self._bias = None
    super(DenseEinsum, self).build(input_shape)

  def get_config(self):
    config = {
        "output_shape":
            self._output_shape,
        "num_summed_dimensions":
            self._num_summed_dimensions,
        "activation":
            tf.keras.activations.serialize(self._activation),
        "use_bias":
            self._use_bias,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super(DenseEinsum, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    ret = tf.einsum(self._einsum_string, inputs, self._kernel)
    if self._use_bias:
      ret += self._bias
    if self._activation is not None:
      ret = self._activation(ret)
    return ret