File size: 7,476 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for span_labeling network."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

from tensorflow.python.keras import keras_parameterized  # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling.networks import span_labeling


# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class SpanLabelingTest(keras_parameterized.TestCase):

  def test_network_creation(self):
    """Validate that the Keras object can be created."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(
        input_width=input_width, output='predictions')
    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf.keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    start_outputs, end_outputs = test_network(sequence_data)

    # Validate that the outputs are of the expected shape.
    expected_output_shape = [None, sequence_length]
    self.assertEqual(expected_output_shape, start_outputs.shape.as_list())
    self.assertEqual(expected_output_shape, end_outputs.shape.as_list())

  def test_network_invocation(self):
    """Validate that the Keras object can be invoked."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(input_width=input_width)

    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf.keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    outputs = test_network(sequence_data)
    model = tf.keras.Model(sequence_data, outputs)

    # Invoke the network as part of a Model.
    batch_size = 3
    input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, input_width))
    start_outputs, end_outputs = model.predict(input_data)

    # Validate that the outputs are of the expected shape.
    expected_output_shape = (batch_size, sequence_length)
    self.assertEqual(expected_output_shape, start_outputs.shape)
    self.assertEqual(expected_output_shape, end_outputs.shape)

  def test_network_invocation_with_internal_logit_output(self):
    """Validate that the logit outputs are correct."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(
        input_width=input_width, output='predictions')
    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf.keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    output = test_network(sequence_data)
    model = tf.keras.Model(sequence_data, output)
    logit_model = tf.keras.Model(
        test_network.inputs,
        [test_network.start_logits, test_network.end_logits])

    batch_size = 3
    input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, input_width))
    start_outputs, end_outputs = model.predict(input_data)
    start_logits, end_logits = logit_model.predict(input_data)

    # Ensure that the tensor shapes are correct.
    expected_output_shape = (batch_size, sequence_length)
    self.assertEqual(expected_output_shape, start_outputs.shape)
    self.assertEqual(expected_output_shape, end_outputs.shape)
    self.assertEqual(expected_output_shape, start_logits.shape)
    self.assertEqual(expected_output_shape, end_logits.shape)

    # Ensure that the logits, when softmaxed, create the outputs.
    input_tensor = tf.keras.Input(expected_output_shape[1:])
    output_tensor = tf.keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
    softmax_model = tf.keras.Model(input_tensor, output_tensor)

    start_softmax = softmax_model.predict(start_logits)
    self.assertAllClose(start_outputs, start_softmax)
    end_softmax = softmax_model.predict(end_logits)
    self.assertAllClose(end_outputs, end_softmax)

  def test_network_invocation_with_external_logit_output(self):
    """Validate that the logit outputs are correct."""
    sequence_length = 15
    input_width = 512
    test_network = span_labeling.SpanLabeling(
        input_width=input_width, output='predictions')
    logit_network = span_labeling.SpanLabeling(
        input_width=input_width, output='logits')
    logit_network.set_weights(test_network.get_weights())

    # Create a 3-dimensional input (the first dimension is implicit).
    sequence_data = tf.keras.Input(
        shape=(sequence_length, input_width), dtype=tf.float32)
    output = test_network(sequence_data)
    logit_output = logit_network(sequence_data)
    model = tf.keras.Model(sequence_data, output)
    logit_model = tf.keras.Model(sequence_data, logit_output)

    batch_size = 3
    input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, input_width))
    start_outputs, end_outputs = model.predict(input_data)
    start_logits, end_logits = logit_model.predict(input_data)

    # Ensure that the tensor shapes are correct.
    expected_output_shape = (batch_size, sequence_length)
    self.assertEqual(expected_output_shape, start_outputs.shape)
    self.assertEqual(expected_output_shape, end_outputs.shape)
    self.assertEqual(expected_output_shape, start_logits.shape)
    self.assertEqual(expected_output_shape, end_logits.shape)

    # Ensure that the logits, when softmaxed, create the outputs.
    input_tensor = tf.keras.Input(expected_output_shape[1:])
    output_tensor = tf.keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
    softmax_model = tf.keras.Model(input_tensor, output_tensor)

    start_softmax = softmax_model.predict(start_logits)
    self.assertAllClose(start_outputs, start_softmax)
    end_softmax = softmax_model.predict(end_logits)
    self.assertAllClose(end_outputs, end_softmax)

  def test_serialize_deserialize(self):
    # Create a network object that sets all of its config options.
    network = span_labeling.SpanLabeling(
        input_width=128,
        activation='relu',
        initializer='zeros',
        output='predictions')

    # Create another network object from the first object's config.
    new_network = span_labeling.SpanLabeling.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())

  def test_unknown_output_type_fails(self):
    with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
      _ = span_labeling.SpanLabeling(input_width=10, output='bad')


if __name__ == '__main__':
  tf.test.main()