Spaces:
Running
Running
File size: 15,555 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transformer decoder that mimics a BERT encoder, to load BERT checkpoints."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling.layers import transformer
from official.nlp.transformer import model_utils as transformer_utils
class TransformerDecoder(tf.keras.layers.Layer):
"""Transformer decoder stack."""
def __init__(self,
num_hidden_layers=12,
hidden_size=768,
num_attention_heads=12,
intermediate_size=3072,
intermediate_activation="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
attend_to_last_layer=True,
multi_channel_cross_attention=False,
**kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self.num_hidden_layers = num_hidden_layers
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.intermediate_activation = tf_utils.get_activation(
intermediate_activation)
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.attend_to_last_layer = attend_to_last_layer
self.multi_channel_cross_attention = multi_channel_cross_attention
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.layers = []
for i in range(self.num_hidden_layers):
self.layers.append(
transformer.TransformerDecoderLayer(
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
intermediate_activation=self.intermediate_activation,
dropout_rate=self.hidden_dropout_prob,
attention_dropout_rate=self.attention_probs_dropout_prob,
kernel_initializer=tf.keras.initializers.TruncatedNormal(
stddev=self.initializer_range),
multi_channel_cross_attention=self.multi_channel_cross_attention,
name=("layer_%d" % i)))
super(TransformerDecoder, self).build(unused_input_shapes)
def call(self, inputs, cache=None, decode_loop_step=None):
"""Return the output of the decoder layer stacks.
Args:
inputs: A dictionary of inputs. `decoder_inputs` is a tf.int32 tensor for
input ids. `encoder_outputs` is a list of tensors with shape
[batch_size, input_length, hidden_size]. `self_attention_mask` is the
bias for decoder self-attention layer. [1, 1, target_length,
target_length]. `attention_mask` is the bias for encoder-decoder
attention layer, [batch_size, 1, 1, input_length].
cache: A dictionary of cache tensors, including key & value attentions.
decode_loop_step: an integer to indicate the step inside a decoding loop.
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size]
"""
decoder_inputs = inputs["decoder_inputs"]
encoder_outputs = inputs["encoder_outputs"]
self_attention_mask = inputs["self_attention_mask"]
attention_mask = inputs["attention_mask"]
decoder_shape = tf_utils.get_shape_list(decoder_inputs, expected_rank=3)
batch_size = decoder_shape[0]
decoder_length = decoder_shape[1]
def _to_bert_self_attention_mask(matrix):
"""[1, 1, target_len, target_len] -> [bs, target_len, target_len]."""
matrix = tf.squeeze(matrix, axis=[1])
matrix = tf.tile(matrix, [batch_size, 1, 1])
return matrix
def _to_bert_encdec_attention_mask(matrix):
"""[bs, 1, 1, input_len] -> [bs, target_len, input_len]."""
if self.multi_channel_cross_attention:
matrix = tf.expand_dims(matrix, axis=2)
matrix = tf.tile(matrix, [1, 1, decoder_length, 1])
else:
matrix = tf.squeeze(matrix, axis=[1])
matrix = tf.tile(matrix, [1, decoder_length, 1])
return matrix
attention_mask = _to_bert_encdec_attention_mask(attention_mask)
self_attention_mask = _to_bert_self_attention_mask(self_attention_mask)
output_tensor = decoder_inputs
for layer_idx in range(self.num_hidden_layers):
if self.attend_to_last_layer:
memory = encoder_outputs[-1]
else:
memory = encoder_outputs[layer_idx]
if self.multi_channel_cross_attention:
transformer_inputs = [
output_tensor, memory, attention_mask, self_attention_mask,
inputs["doc_attention_probs"]
]
else:
transformer_inputs = [
output_tensor, memory, attention_mask, self_attention_mask
]
# Gets the cache for decoding.
if cache is None:
output_tensor, _ = self.layers[layer_idx](transformer_inputs)
else:
cache_layer_idx = str(layer_idx)
output_tensor, cache[cache_layer_idx] = self.layers[layer_idx](
transformer_inputs,
cache=cache[cache_layer_idx],
decode_loop_step=decode_loop_step)
return output_tensor, cache
def get_attention_bias(input_tensor,
bias_type,
padding_value=0,
max_length=None):
"""A helper function to get various attention bias tensors."""
if bias_type not in ("single_cross", "multi_cross", "decoder_self"):
raise ValueError("Invalid attention bias type: %s" % bias_type)
if bias_type == "single_cross":
length = tf_utils.get_shape_list(input_tensor, expected_rank=2)[1]
bias = transformer_utils.get_padding_bias(
input_tensor, padding_value=padding_value)
elif bias_type == "multi_cross":
length = tf_utils.get_shape_list(input_tensor, expected_rank=3)[2]
padding = transformer_utils.get_padding(
input_tensor, padding_value=padding_value)
bias = padding * -1e9
else:
if max_length is not None:
length = max_length
else:
length = tf_utils.get_shape_list(input_tensor, expected_rank=2)[1]
bias = transformer_utils.get_decoder_self_attention_bias(length)
return tf.where(bias < 0, tf.zeros_like(bias), tf.ones_like(bias))
class AttentionBias(tf.keras.layers.Layer):
def __init__(self, bias_type, **kwargs):
super(AttentionBias, self).__init__(**kwargs)
self.bias_type = bias_type
def call(self, inputs):
return get_attention_bias(inputs, self.bias_type)
class EmbeddingPostprocessor(tf.keras.layers.Layer):
"""Performs various post-processing on a word embedding tensor."""
def __init__(self,
use_type_embeddings=False,
token_type_vocab_size=None,
use_position_embeddings=True,
max_position_embeddings=512,
dropout_prob=0.0,
initializer_range=0.02,
initializer=None,
**kwargs):
super(EmbeddingPostprocessor, self).__init__(**kwargs)
self.use_type_embeddings = use_type_embeddings
self.token_type_vocab_size = token_type_vocab_size
self.use_position_embeddings = use_position_embeddings
self.max_position_embeddings = max_position_embeddings
self.dropout_prob = dropout_prob
self.initializer_range = initializer_range
if not initializer:
self.initializer = tf.keras.initializers.TruncatedNormal(
stddev=initializer_range)
else:
self.initializer = initializer
if self.use_type_embeddings and not self.token_type_vocab_size:
raise ValueError("If `use_type_embeddings` is True, then "
"`token_type_vocab_size` must be specified.")
def build(self, input_shapes):
"""Implements build() for the layer."""
(word_embeddings_shape, _) = input_shapes
width = word_embeddings_shape.as_list()[-1]
self.type_embeddings = None
if self.use_type_embeddings:
self.type_embeddings = self.add_weight(
"type_embeddings",
shape=[self.token_type_vocab_size, width],
initializer=tf.keras.initializers.TruncatedNormal(
stddev=self.initializer_range),
dtype=self.dtype)
self.position_embeddings = None
if self.use_position_embeddings:
self.position_embeddings = self.add_weight(
"position_embeddings",
shape=[self.max_position_embeddings, width],
initializer=tf.keras.initializers.TruncatedNormal(
stddev=self.initializer_range),
dtype=self.dtype)
self.output_layer_norm = tf.keras.layers.LayerNormalization(
name="layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
self.output_dropout = tf.keras.layers.Dropout(
rate=self.dropout_prob, dtype=tf.float32)
super(EmbeddingPostprocessor, self).build(input_shapes)
def __call__(self, word_embeddings, token_type_ids=None, **kwargs):
inputs = tf_utils.pack_inputs([word_embeddings, token_type_ids])
return super(EmbeddingPostprocessor, self).__call__(inputs, **kwargs)
def call(self, inputs):
"""Implements call() for the layer."""
unpacked_inputs = tf_utils.unpack_inputs(inputs)
word_embeddings = unpacked_inputs[0]
token_type_ids = unpacked_inputs[1]
input_shape = tf_utils.get_shape_list(word_embeddings, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
width = input_shape[2]
output = word_embeddings
if self.use_type_embeddings:
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
token_type_embeddings = tf.gather(self.type_embeddings,
flat_token_type_ids)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
output += token_type_embeddings
if self.use_position_embeddings:
position_embeddings = tf.expand_dims(
tf.slice(self.position_embeddings, [0, 0], [seq_length, width]),
axis=0)
output += position_embeddings
output = self.output_layer_norm(output)
output = self.output_dropout(output)
return output
class Decoder(tf.keras.layers.Layer):
"""The decoder network which can reuse encoder embeddings for target."""
def __init__(self, config, embedding_lookup=None, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.config = config
# Shares vocabulary embedding.
self.embedding_lookup = None
if embedding_lookup:
self.embedding_lookup = embedding_lookup
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
if self.embedding_lookup is None:
self.embedding_lookup = layers.OnDeviceEmbedding(
vocab_size=self.config.vocab_size,
embedding_width=self.config.hidden_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=self.config.initializer_range),
name="target_embeddings")
self.embedding_postprocessor = EmbeddingPostprocessor(
use_type_embeddings=False,
use_position_embeddings=True,
max_position_embeddings=self.config.max_position_embeddings,
dropout_prob=self.config.hidden_dropout_prob,
initializer=tf.keras.initializers.VarianceScaling(
scale=self.config.initializer_gain,
mode="fan_avg",
distribution="uniform"),
name="embedding_postprocessor")
# Decoder can use a different intermediate size.
self.multi_channel_cross_attention = self.config.get(
"multi_channel_cross_attention", False)
self.decoder = TransformerDecoder(
num_hidden_layers=self.config.num_decoder_layers,
hidden_size=self.config.hidden_size,
num_attention_heads=self.config.num_decoder_attn_heads,
intermediate_size=self.config.decoder_intermediate_size,
intermediate_activation=self.config.hidden_act,
hidden_dropout_prob=self.config.hidden_dropout_prob,
attention_probs_dropout_prob=self.config.attention_probs_dropout_prob,
initializer_range=self.config.initializer_range,
multi_channel_cross_attention=self.multi_channel_cross_attention,
name="decoder")
super(Decoder, self).build(unused_input_shapes)
def _decoding_step_time_signal(self, target_embeds, decode_loop_step):
"""Applies time signal (positional embeddings) for decoded embeddings."""
# TODO(hongkuny): migrate to keras bert and design a module to handle this.
output = target_embeds
if self.embedding_postprocessor.use_position_embeddings:
position_embeddings = tf.gather(
self.embedding_postprocessor.position_embeddings, [decode_loop_step])
# Broadcasts to all sequences inside a batch.
output += position_embeddings
output = self.embedding_postprocessor.output_layer_norm(output)
output = self.embedding_postprocessor.output_dropout(output)
return output
def call(self,
inputs,
cache=None,
decode_loop_step=None,
padded_decode=False):
"""Implements call() for the layer.
Args:
inputs: a list of input tensors.
cache: A dictionary of cache tensors, including key & value attentions.
Due to the limit of keras, we uses the side effect to update cache and
states of tensors will be mutated.
decode_loop_step: an integer to indicate the step inside a decoding loop.
padded_decode: a boolean indicates if the pass is for padded decoding.
Returns:
Decoder output tensors.
"""
attention_bias = inputs["attention_bias"]
target_ids = inputs["target_ids"]
all_encoder_outputs = inputs["all_encoder_outputs"]
self_attention_bias = inputs["self_attention_bias"]
if not isinstance(all_encoder_outputs, list):
all_encoder_outputs = [all_encoder_outputs]
target_embeds = self.embedding_lookup(target_ids)
if decode_loop_step is None:
target_embeds = self.embedding_postprocessor(target_embeds)
else:
target_embeds = self._decoding_step_time_signal(target_embeds,
decode_loop_step)
decoder_inputs = dict(
decoder_inputs=target_embeds,
encoder_outputs=all_encoder_outputs,
self_attention_mask=self_attention_bias,
attention_mask=attention_bias)
if self.multi_channel_cross_attention:
decoder_inputs["doc_attention_probs"] = inputs["doc_attention_probs"]
decode_outputs, cache = self.decoder(
decoder_inputs, cache, decode_loop_step if padded_decode else None)
return decode_outputs
|