File size: 6,194 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nlp.nhnet.decoder."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
from official.nlp.modeling import layers
from official.nlp.nhnet import configs
from official.nlp.nhnet import decoder
from official.nlp.nhnet import utils


class DecoderTest(tf.test.TestCase):

  def setUp(self):
    super(DecoderTest, self).setUp()
    self._config = utils.get_test_params()

  def test_transformer_decoder(self):
    decoder_block = decoder.TransformerDecoder(
        num_hidden_layers=self._config.num_hidden_layers,
        hidden_size=self._config.hidden_size,
        num_attention_heads=self._config.num_attention_heads,
        intermediate_size=self._config.intermediate_size,
        intermediate_activation=self._config.hidden_act,
        hidden_dropout_prob=self._config.hidden_dropout_prob,
        attention_probs_dropout_prob=self._config.attention_probs_dropout_prob,
        initializer_range=self._config.initializer_range)
    decoder_block.build(None)
    self.assertEqual(len(decoder_block.layers), self._config.num_hidden_layers)

  def test_bert_decoder(self):
    seq_length = 10
    encoder_input_ids = tf.keras.layers.Input(
        shape=(seq_length,), name="encoder_input_ids", dtype=tf.int32)
    target_ids = tf.keras.layers.Input(
        shape=(seq_length,), name="target_ids", dtype=tf.int32)
    encoder_outputs = tf.keras.layers.Input(
        shape=(seq_length, self._config.hidden_size),
        name="all_encoder_outputs",
        dtype=tf.float32)
    embedding_lookup = layers.OnDeviceEmbedding(
        vocab_size=self._config.vocab_size,
        embedding_width=self._config.hidden_size,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=self._config.initializer_range),
        name="word_embeddings")
    cross_attention_bias = decoder.AttentionBias(bias_type="single_cross")(
        encoder_input_ids)
    self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")(
        target_ids)
    inputs = dict(
        attention_bias=cross_attention_bias,
        self_attention_bias=self_attention_bias,
        target_ids=target_ids,
        all_encoder_outputs=encoder_outputs)
    decoder_layer = decoder.Decoder(self._config, embedding_lookup)
    outputs = decoder_layer(inputs)
    model_inputs = dict(
        encoder_input_ids=encoder_input_ids,
        target_ids=target_ids,
        all_encoder_outputs=encoder_outputs)
    model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test")
    self.assertLen(decoder_layer.trainable_weights, 30)
    # Forward path.
    fake_inputs = {
        "encoder_input_ids": np.zeros((2, 10), dtype=np.int32),
        "target_ids": np.zeros((2, 10), dtype=np.int32),
        "all_encoder_outputs": np.zeros((2, 10, 16), dtype=np.float32),
    }
    output_tensor = model(fake_inputs)
    self.assertEqual(output_tensor.shape, (2, 10, 16))

  def test_multi_doc_decoder(self):
    self._config = utils.get_test_params(cls=configs.NHNetConfig)
    seq_length = 10
    num_docs = 5
    encoder_input_ids = tf.keras.layers.Input(
        shape=(num_docs, seq_length), name="encoder_input_ids", dtype=tf.int32)
    target_ids = tf.keras.layers.Input(
        shape=(seq_length,), name="target_ids", dtype=tf.int32)
    encoder_outputs = tf.keras.layers.Input(
        shape=(num_docs, seq_length, self._config.hidden_size),
        name="all_encoder_outputs",
        dtype=tf.float32)
    embedding_lookup = layers.OnDeviceEmbedding(
        vocab_size=self._config.vocab_size,
        embedding_width=self._config.hidden_size,
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=self._config.initializer_range),
        name="word_embeddings")
    doc_attention_probs = tf.keras.layers.Input(
        shape=(self._config.num_decoder_attn_heads, seq_length, num_docs),
        name="doc_attention_probs",
        dtype=tf.float32)
    cross_attention_bias = decoder.AttentionBias(bias_type="multi_cross")(
        encoder_input_ids)
    self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")(
        target_ids)

    inputs = dict(
        attention_bias=cross_attention_bias,
        self_attention_bias=self_attention_bias,
        target_ids=target_ids,
        all_encoder_outputs=encoder_outputs,
        doc_attention_probs=doc_attention_probs)

    decoder_layer = decoder.Decoder(self._config, embedding_lookup)
    outputs = decoder_layer(inputs)
    model_inputs = dict(
        encoder_input_ids=encoder_input_ids,
        target_ids=target_ids,
        all_encoder_outputs=encoder_outputs,
        doc_attention_probs=doc_attention_probs)
    model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test")
    self.assertLen(decoder_layer.trainable_weights, 30)
    # Forward path.
    fake_inputs = {
        "encoder_input_ids":
            np.zeros((2, num_docs, seq_length), dtype=np.int32),
        "target_ids":
            np.zeros((2, seq_length), dtype=np.int32),
        "all_encoder_outputs":
            np.zeros((2, num_docs, seq_length, 16), dtype=np.float32),
        "doc_attention_probs":
            np.zeros(
                (2, self._config.num_decoder_attn_heads, seq_length, num_docs),
                dtype=np.float32)
    }
    output_tensor = model(fake_inputs)
    self.assertEqual(output_tensor.shape, (2, seq_length, 16))


if __name__ == "__main__":
  tf.test.main()