Spaces:
Running
Running
File size: 22,264 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines the Transformer model in TF 2.0.
Model paper: https://arxiv.org/pdf/1706.03762.pdf
Transformer model code source: https://github.com/tensorflow/tensor2tensor
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from official.nlp.modeling.layers import position_embedding
from official.nlp.transformer import attention_layer
from official.nlp.transformer import beam_search
from official.nlp.transformer import embedding_layer
from official.nlp.transformer import ffn_layer
from official.nlp.transformer import metrics
from official.nlp.transformer import model_utils
from official.nlp.transformer.utils.tokenizer import EOS_ID
# Disable the not-callable lint error, since it claims many objects are not
# callable when they actually are.
# pylint: disable=not-callable
def create_model(params, is_train):
"""Creates transformer model."""
with tf.name_scope("model"):
if is_train:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
internal_model = Transformer(params, name="transformer_v2")
logits = internal_model([inputs, targets], training=is_train)
vocab_size = params["vocab_size"]
label_smoothing = params["label_smoothing"]
if params["enable_metrics_in_training"]:
logits = metrics.MetricLayer(vocab_size)([logits, targets])
logits = tf.keras.layers.Lambda(lambda x: x, name="logits",
dtype=tf.float32)(logits)
model = tf.keras.Model([inputs, targets], logits)
# TODO(reedwm): Can we do this loss in float16 instead of float32?
loss = metrics.transformer_loss(
logits, targets, label_smoothing, vocab_size)
model.add_loss(loss)
return model
else:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
internal_model = Transformer(params, name="transformer_v2")
ret = internal_model([inputs], training=is_train)
outputs, scores = ret["outputs"], ret["scores"]
return tf.keras.Model(inputs, [outputs, scores])
class Transformer(tf.keras.Model):
"""Transformer model with Keras.
Implemented as described in: https://arxiv.org/pdf/1706.03762.pdf
The Transformer model consists of an encoder and decoder. The input is an int
sequence (or a batch of sequences). The encoder produces a continuous
representation, and the decoder uses the encoder output to generate
probabilities for the output sequence.
"""
def __init__(self, params, name=None):
"""Initialize layers to build Transformer model.
Args:
params: hyperparameter object defining layer sizes, dropout values, etc.
name: name of the model.
"""
super(Transformer, self).__init__(name=name)
self.params = params
self.embedding_softmax_layer = embedding_layer.EmbeddingSharedWeights(
params["vocab_size"], params["hidden_size"])
self.encoder_stack = EncoderStack(params)
self.decoder_stack = DecoderStack(params)
self.position_embedding = position_embedding.RelativePositionEmbedding(
hidden_size=self.params["hidden_size"])
def get_config(self):
return {
"params": self.params,
}
def call(self, inputs, training):
"""Calculate target logits or inferred target sequences.
Args:
inputs: input tensor list of size 1 or 2.
First item, inputs: int tensor with shape [batch_size, input_length].
Second item (optional), targets: None or int tensor with shape
[batch_size, target_length].
training: boolean, whether in training mode or not.
Returns:
If targets is defined, then return logits for each word in the target
sequence. float tensor with shape [batch_size, target_length, vocab_size]
If target is none, then generate output sequence one token at a time.
returns a dictionary {
outputs: [batch_size, decoded length]
scores: [batch_size, float]}
Even when float16 is used, the output tensor(s) are always float32.
Raises:
NotImplementedError: If try to use padded decode method on CPU/GPUs.
"""
if len(inputs) == 2:
inputs, targets = inputs[0], inputs[1]
else:
# Decoding path.
inputs, targets = inputs[0], None
if self.params["padded_decode"]:
if not self.params["num_replicas"]:
raise NotImplementedError(
"Padded decoding on CPU/GPUs is not supported.")
decode_batch_size = int(self.params["decode_batch_size"] /
self.params["num_replicas"])
inputs.set_shape([
decode_batch_size, self.params["decode_max_length"]
])
# Variance scaling is used here because it seems to work in many problems.
# Other reasonable initializers may also work just as well.
with tf.name_scope("Transformer"):
# Calculate attention bias for encoder self-attention and decoder
# multi-headed attention layers.
attention_bias = model_utils.get_padding_bias(inputs)
# Run the inputs through the encoder layer to map the symbol
# representations to continuous representations.
encoder_outputs = self.encode(inputs, attention_bias, training)
# Generate output sequence if targets is None, or return logits if target
# sequence is known.
if targets is None:
return self.predict(encoder_outputs, attention_bias, training)
else:
logits = self.decode(targets, encoder_outputs, attention_bias, training)
return logits
def encode(self, inputs, attention_bias, training):
"""Generate continuous representation for inputs.
Args:
inputs: int tensor with shape [batch_size, input_length].
attention_bias: float tensor with shape [batch_size, 1, 1, input_length].
training: boolean, whether in training mode or not.
Returns:
float tensor with shape [batch_size, input_length, hidden_size]
"""
with tf.name_scope("encode"):
# Prepare inputs to the layer stack by adding positional encodings and
# applying dropout.
embedded_inputs = self.embedding_softmax_layer(inputs)
embedded_inputs = tf.cast(embedded_inputs, self.params["dtype"])
inputs_padding = model_utils.get_padding(inputs)
attention_bias = tf.cast(attention_bias, self.params["dtype"])
with tf.name_scope("add_pos_encoding"):
pos_encoding = self.position_embedding(inputs=embedded_inputs)
pos_encoding = tf.cast(pos_encoding, self.params["dtype"])
encoder_inputs = embedded_inputs + pos_encoding
if training:
encoder_inputs = tf.nn.dropout(
encoder_inputs, rate=self.params["layer_postprocess_dropout"])
return self.encoder_stack(
encoder_inputs, attention_bias, inputs_padding, training=training)
def decode(self, targets, encoder_outputs, attention_bias, training):
"""Generate logits for each value in the target sequence.
Args:
targets: target values for the output sequence. int tensor with shape
[batch_size, target_length]
encoder_outputs: continuous representation of input sequence. float tensor
with shape [batch_size, input_length, hidden_size]
attention_bias: float tensor with shape [batch_size, 1, 1, input_length]
training: boolean, whether in training mode or not.
Returns:
float32 tensor with shape [batch_size, target_length, vocab_size]
"""
with tf.name_scope("decode"):
# Prepare inputs to decoder layers by shifting targets, adding positional
# encoding and applying dropout.
decoder_inputs = self.embedding_softmax_layer(targets)
decoder_inputs = tf.cast(decoder_inputs, self.params["dtype"])
attention_bias = tf.cast(attention_bias, self.params["dtype"])
with tf.name_scope("shift_targets"):
# Shift targets to the right, and remove the last element
decoder_inputs = tf.pad(decoder_inputs,
[[0, 0], [1, 0], [0, 0]])[:, :-1, :]
with tf.name_scope("add_pos_encoding"):
length = tf.shape(decoder_inputs)[1]
pos_encoding = self.position_embedding(decoder_inputs)
pos_encoding = tf.cast(pos_encoding, self.params["dtype"])
decoder_inputs += pos_encoding
if training:
decoder_inputs = tf.nn.dropout(
decoder_inputs, rate=self.params["layer_postprocess_dropout"])
# Run values
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
length, dtype=self.params["dtype"])
outputs = self.decoder_stack(
decoder_inputs,
encoder_outputs,
decoder_self_attention_bias,
attention_bias,
training=training)
logits = self.embedding_softmax_layer(outputs, mode="linear")
logits = tf.cast(logits, tf.float32)
return logits
def _get_symbols_to_logits_fn(self, max_decode_length, training):
"""Returns a decoding function that calculates logits of the next tokens."""
timing_signal = self.position_embedding(
inputs=None, length=max_decode_length + 1)
timing_signal = tf.cast(timing_signal, self.params["dtype"])
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
max_decode_length, dtype=self.params["dtype"])
# TODO(b/139770046): Refactor code with better naming of i.
def symbols_to_logits_fn(ids, i, cache):
"""Generate logits for next potential IDs.
Args:
ids: Current decoded sequences. int tensor with shape [batch_size *
beam_size, i + 1].
i: Loop index.
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values)
"""
# Set decoder input to the last generated IDs
decoder_input = ids[:, -1:]
# Preprocess decoder input by getting embeddings and adding timing signal.
decoder_input = self.embedding_softmax_layer(decoder_input)
if self.params["padded_decode"]:
timing_signal_shape = timing_signal.shape.as_list()
decoder_input += tf.slice(timing_signal, [i, 0],
[1, timing_signal_shape[1]])
bias_shape = decoder_self_attention_bias.shape.as_list()
self_attention_bias = tf.slice(
decoder_self_attention_bias, [0, 0, i, 0],
[bias_shape[0], bias_shape[1], 1, bias_shape[3]])
else:
decoder_input += timing_signal[i:i + 1]
self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1]
decoder_outputs = self.decoder_stack(
decoder_input,
cache.get("encoder_outputs"),
self_attention_bias,
cache.get("encoder_decoder_attention_bias"),
training=training,
cache=cache,
decode_loop_step=i if self.params["padded_decode"] else None)
logits = self.embedding_softmax_layer(decoder_outputs, mode="linear")
logits = tf.squeeze(logits, axis=[1])
return logits, cache
return symbols_to_logits_fn
def predict(self, encoder_outputs, encoder_decoder_attention_bias, training):
"""Return predicted sequence."""
encoder_outputs = tf.cast(encoder_outputs, self.params["dtype"])
if self.params["padded_decode"]:
batch_size = encoder_outputs.shape.as_list()[0]
input_length = encoder_outputs.shape.as_list()[1]
else:
batch_size = tf.shape(encoder_outputs)[0]
input_length = tf.shape(encoder_outputs)[1]
max_decode_length = input_length + self.params["extra_decode_length"]
encoder_decoder_attention_bias = tf.cast(encoder_decoder_attention_bias,
self.params["dtype"])
symbols_to_logits_fn = self._get_symbols_to_logits_fn(
max_decode_length, training)
# Create initial set of IDs that will be passed into symbols_to_logits_fn.
initial_ids = tf.zeros([batch_size], dtype=tf.int32)
# Create cache storing decoder attention values for each layer.
# pylint: disable=g-complex-comprehension
init_decode_length = (
max_decode_length if self.params["padded_decode"] else 0)
num_heads = self.params["num_heads"]
dim_per_head = self.params["hidden_size"] // num_heads
cache = {
"layer_%d" % layer: {
"k":
tf.zeros([
batch_size, init_decode_length, num_heads, dim_per_head
],
dtype=self.params["dtype"]),
"v":
tf.zeros([
batch_size, init_decode_length, num_heads, dim_per_head
],
dtype=self.params["dtype"])
} for layer in range(self.params["num_hidden_layers"])
}
# pylint: enable=g-complex-comprehension
# Add encoder output and attention bias to the cache.
cache["encoder_outputs"] = encoder_outputs
cache["encoder_decoder_attention_bias"] = encoder_decoder_attention_bias
# Use beam search to find the top beam_size sequences and scores.
decoded_ids, scores = beam_search.sequence_beam_search(
symbols_to_logits_fn=symbols_to_logits_fn,
initial_ids=initial_ids,
initial_cache=cache,
vocab_size=self.params["vocab_size"],
beam_size=self.params["beam_size"],
alpha=self.params["alpha"],
max_decode_length=max_decode_length,
eos_id=EOS_ID,
padded_decode=self.params["padded_decode"],
dtype=self.params["dtype"])
# Get the top sequence for each batch element
top_decoded_ids = decoded_ids[:, 0, 1:]
top_scores = scores[:, 0]
return {"outputs": top_decoded_ids, "scores": top_scores}
class PrePostProcessingWrapper(tf.keras.layers.Layer):
"""Wrapper class that applies layer pre-processing and post-processing."""
def __init__(self, layer, params):
super(PrePostProcessingWrapper, self).__init__()
self.layer = layer
self.params = params
self.postprocess_dropout = params["layer_postprocess_dropout"]
def build(self, input_shape):
# Create normalization layer
self.layer_norm = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(PrePostProcessingWrapper, self).build(input_shape)
def get_config(self):
return {
"params": self.params,
}
def call(self, x, *args, **kwargs):
"""Calls wrapped layer with same parameters."""
# Preprocessing: apply layer normalization
training = kwargs["training"]
y = self.layer_norm(x)
# Get layer output
y = self.layer(y, *args, **kwargs)
# Postprocessing: apply dropout and residual connection
if training:
y = tf.nn.dropout(y, rate=self.postprocess_dropout)
return x + y
class EncoderStack(tf.keras.layers.Layer):
"""Transformer encoder stack.
The encoder stack is made up of N identical layers. Each layer is composed
of the sublayers:
1. Self-attention layer
2. Feedforward network (which is 2 fully-connected layers)
"""
def __init__(self, params):
super(EncoderStack, self).__init__()
self.params = params
self.layers = []
def build(self, input_shape):
"""Builds the encoder stack."""
params = self.params
for _ in range(params["num_hidden_layers"]):
# Create sublayers for each layer.
self_attention_layer = attention_layer.SelfAttention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"])
feed_forward_network = ffn_layer.FeedForwardNetwork(
params["hidden_size"], params["filter_size"], params["relu_dropout"])
self.layers.append([
PrePostProcessingWrapper(self_attention_layer, params),
PrePostProcessingWrapper(feed_forward_network, params)
])
# Create final layer normalization layer.
self.output_normalization = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(EncoderStack, self).build(input_shape)
def get_config(self):
return {
"params": self.params,
}
def call(self, encoder_inputs, attention_bias, inputs_padding, training):
"""Return the output of the encoder layer stacks.
Args:
encoder_inputs: tensor with shape [batch_size, input_length, hidden_size]
attention_bias: bias for the encoder self-attention layer. [batch_size, 1,
1, input_length]
inputs_padding: tensor with shape [batch_size, input_length], inputs with
zero paddings.
training: boolean, whether in training mode or not.
Returns:
Output of encoder layer stack.
float32 tensor with shape [batch_size, input_length, hidden_size]
"""
for n, layer in enumerate(self.layers):
# Run inputs through the sublayers.
self_attention_layer = layer[0]
feed_forward_network = layer[1]
with tf.name_scope("layer_%d" % n):
with tf.name_scope("self_attention"):
encoder_inputs = self_attention_layer(
encoder_inputs, attention_bias, training=training)
with tf.name_scope("ffn"):
encoder_inputs = feed_forward_network(
encoder_inputs, training=training)
return self.output_normalization(encoder_inputs)
class DecoderStack(tf.keras.layers.Layer):
"""Transformer decoder stack.
Like the encoder stack, the decoder stack is made up of N identical layers.
Each layer is composed of the sublayers:
1. Self-attention layer
2. Multi-headed attention layer combining encoder outputs with results from
the previous self-attention layer.
3. Feedforward network (2 fully-connected layers)
"""
def __init__(self, params):
super(DecoderStack, self).__init__()
self.params = params
self.layers = []
def build(self, input_shape):
"""Builds the decoder stack."""
params = self.params
for _ in range(params["num_hidden_layers"]):
self_attention_layer = attention_layer.SelfAttention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"])
enc_dec_attention_layer = attention_layer.Attention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"])
feed_forward_network = ffn_layer.FeedForwardNetwork(
params["hidden_size"], params["filter_size"], params["relu_dropout"])
self.layers.append([
PrePostProcessingWrapper(self_attention_layer, params),
PrePostProcessingWrapper(enc_dec_attention_layer, params),
PrePostProcessingWrapper(feed_forward_network, params)
])
self.output_normalization = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(DecoderStack, self).build(input_shape)
def get_config(self):
return {
"params": self.params,
}
def call(self,
decoder_inputs,
encoder_outputs,
decoder_self_attention_bias,
attention_bias,
training,
cache=None,
decode_loop_step=None):
"""Return the output of the decoder layer stacks.
Args:
decoder_inputs: A tensor with shape
[batch_size, target_length, hidden_size].
encoder_outputs: A tensor with shape
[batch_size, input_length, hidden_size]
decoder_self_attention_bias: A tensor with shape
[1, 1, target_len, target_length], the bias for decoder self-attention
layer.
attention_bias: A tensor with shape [batch_size, 1, 1, input_length],
the bias for encoder-decoder attention layer.
training: A bool, whether in training mode or not.
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": A tensor with shape [batch_size, i, key_channels],
"v": A tensor with shape [batch_size, i, value_channels]},
...}
decode_loop_step: An integer, the step number of the decoding loop. Used
only for autoregressive inference on TPU.
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size]
"""
for n, layer in enumerate(self.layers):
self_attention_layer = layer[0]
enc_dec_attention_layer = layer[1]
feed_forward_network = layer[2]
# Run inputs through the sublayers.
layer_name = "layer_%d" % n
layer_cache = cache[layer_name] if cache is not None else None
with tf.name_scope(layer_name):
with tf.name_scope("self_attention"):
decoder_inputs = self_attention_layer(
decoder_inputs,
decoder_self_attention_bias,
training=training,
cache=layer_cache,
decode_loop_step=decode_loop_step)
with tf.name_scope("encdec_attention"):
decoder_inputs = enc_dec_attention_layer(
decoder_inputs,
encoder_outputs,
attention_bias,
training=training)
with tf.name_scope("ffn"):
decoder_inputs = feed_forward_network(
decoder_inputs, training=training)
return self.output_normalization(decoder_inputs)
|