Spaces:
Running
Running
File size: 12,897 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
import hashlib
import os
import mock
import numpy as np
import scipy.stats
import tensorflow as tf
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
from official.recommendation import movielens
from official.recommendation import popen_helper
DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
EVAL_BATCH_SIZE = 4000
NUM_NEG = 4
END_TO_END_TRAIN_MD5 = "b218738e915e825d03939c5e305a2698"
END_TO_END_EVAL_MD5 = "d753d0f3186831466d6e218163a9501e"
FRESH_RANDOMNESS_MD5 = "63d0dff73c0e5f1048fbdc8c65021e22"
def mock_download(*args, **kwargs):
return
# The forkpool used by data producers interacts badly with the threading
# used by TestCase. Without this patch tests will hang, and no amount
# of diligent closing and joining within the producer will prevent it.
@mock.patch.object(popen_helper, "get_forkpool", popen_helper.get_fauxpool)
class BaseTest(tf.test.TestCase):
def setUp(self):
tf.compat.v1.disable_eager_execution()
self.temp_data_dir = self.get_temp_dir()
ratings_folder = os.path.join(self.temp_data_dir, DATASET)
tf.io.gfile.makedirs(ratings_folder)
np.random.seed(0)
raw_user_ids = np.arange(NUM_USERS * 3)
np.random.shuffle(raw_user_ids)
raw_user_ids = raw_user_ids[:NUM_USERS]
raw_item_ids = np.arange(NUM_ITEMS * 3)
np.random.shuffle(raw_item_ids)
raw_item_ids = raw_item_ids[:NUM_ITEMS]
users = np.random.choice(raw_user_ids, NUM_PTS)
items = np.random.choice(raw_item_ids, NUM_PTS)
scores = np.random.randint(low=0, high=5, size=NUM_PTS)
times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)
self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
self.seen_pairs = set()
self.holdout = {}
with tf.io.gfile.GFile(self.rating_file, "w") as f:
f.write("user_id,item_id,rating,timestamp\n")
for usr, itm, scr, ts in zip(users, items, scores, times):
pair = (usr, itm)
if pair in self.seen_pairs:
continue
self.seen_pairs.add(pair)
if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
self.holdout[usr] = (ts, itm)
f.write("{},{},{},{}\n".format(usr, itm, scr, ts))
movielens.download = mock_download
movielens.NUM_RATINGS[DATASET] = NUM_PTS
movielens.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS, NUM_ITEMS)
def make_params(self, train_epochs=1):
return {
"train_epochs": train_epochs,
"batches_per_step": 1,
"use_seed": False,
"batch_size": BATCH_SIZE,
"eval_batch_size": EVAL_BATCH_SIZE,
"num_neg": NUM_NEG,
"match_mlperf": True,
"use_tpu": False,
"use_xla_for_gpu": False,
"stream_files": False,
}
def test_preprocessing(self):
# For the most part the necessary checks are performed within
# _filter_index_sort()
cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
data, valid_cache = data_preprocessing._filter_index_sort(
self.rating_file, cache_path=cache_path)
assert len(data[rconst.USER_MAP]) == NUM_USERS
assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
def drain_dataset(self, dataset, g):
# type: (tf.data.Dataset, tf.Graph) -> list
with self.session(graph=g) as sess:
with g.as_default():
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
output = []
while True:
try:
output.append(sess.run(batch))
except tf.errors.OutOfRangeError:
break
return output
def _test_end_to_end(self, constructor_type):
params = self.make_params(train_epochs=1)
_, _, producer = data_preprocessing.instantiate_pipeline(
dataset=DATASET, data_dir=self.temp_data_dir, params=params,
constructor_type=constructor_type, deterministic=True)
producer.start()
producer.join()
assert producer._fatal_exception is None
user_inv_map = {v: k for k, v in producer.user_map.items()}
item_inv_map = {v: k for k, v in producer.item_map.items()}
# ==========================================================================
# == Training Data =========================================================
# ==========================================================================
g = tf.Graph()
with g.as_default():
input_fn = producer.make_input_fn(is_training=True)
dataset = input_fn(params)
first_epoch = self.drain_dataset(dataset=dataset, g=g)
counts = defaultdict(int)
train_examples = {
True: set(),
False: set(),
}
md5 = hashlib.md5()
for features, labels in first_epoch:
data_list = [
features[movielens.USER_COLUMN].flatten(),
features[movielens.ITEM_COLUMN].flatten(),
features[rconst.VALID_POINT_MASK].flatten(),
labels.flatten()
]
for i in data_list:
md5.update(i.tobytes())
for u, i, v, l in zip(*data_list):
if not v:
continue # ignore padding
u_raw = user_inv_map[u]
i_raw = item_inv_map[i]
if ((u_raw, i_raw) in self.seen_pairs) != l:
# The evaluation item is not considered during false negative
# generation, so it will occasionally appear as a negative example
# during training.
assert not l
self.assertEqual(i_raw, self.holdout[u_raw][1])
train_examples[l].add((u_raw, i_raw))
counts[(u_raw, i_raw)] += 1
self.assertRegexpMatches(md5.hexdigest(), END_TO_END_TRAIN_MD5)
num_positives_seen = len(train_examples[True])
self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
# This check is more heuristic because negatives are sampled with
# replacement. It only checks that negative generation is reasonably random.
self.assertGreater(
len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)
# This checks that the samples produced are independent by checking the
# number of duplicate entries. If workers are not properly independent there
# will be lots of repeated pairs.
self.assertLess(np.mean(list(counts.values())), 1.1)
# ==========================================================================
# == Eval Data =============================================================
# ==========================================================================
with g.as_default():
input_fn = producer.make_input_fn(is_training=False)
dataset = input_fn(params)
eval_data = self.drain_dataset(dataset=dataset, g=g)
current_user = None
md5 = hashlib.md5()
for features in eval_data:
data_list = [
features[movielens.USER_COLUMN].flatten(),
features[movielens.ITEM_COLUMN].flatten(),
features[rconst.DUPLICATE_MASK].flatten()
]
for i in data_list:
md5.update(i.tobytes())
for idx, (u, i, d) in enumerate(zip(*data_list)):
u_raw = user_inv_map[u]
i_raw = item_inv_map[i]
if current_user is None:
current_user = u
# Ensure that users appear in blocks, as the evaluation logic expects
# this structure.
self.assertEqual(u, current_user)
# The structure of evaluation data is 999 negative examples followed
# by the holdout positive.
if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
# Check that the last element in each chunk is the holdout item.
self.assertEqual(i_raw, self.holdout[u_raw][1])
current_user = None
elif i_raw == self.holdout[u_raw][1]:
# Because the holdout item is not given to the negative generation
# process, it can appear as a negative. In that case, it should be
# masked out as a duplicate. (Since the true positive is placed at
# the end and would therefore lose the tie.)
assert d
else:
# Otherwise check that the other 999 points for a user are selected
# from the negatives.
assert (u_raw, i_raw) not in self.seen_pairs
self.assertRegexpMatches(md5.hexdigest(), END_TO_END_EVAL_MD5)
def _test_fresh_randomness(self, constructor_type):
train_epochs = 5
params = self.make_params(train_epochs=train_epochs)
_, _, producer = data_preprocessing.instantiate_pipeline(
dataset=DATASET, data_dir=self.temp_data_dir, params=params,
constructor_type=constructor_type, deterministic=True)
producer.start()
results = []
g = tf.Graph()
with g.as_default():
for _ in range(train_epochs):
input_fn = producer.make_input_fn(is_training=True)
dataset = input_fn(params)
results.extend(self.drain_dataset(dataset=dataset, g=g))
producer.join()
assert producer._fatal_exception is None
positive_counts, negative_counts = defaultdict(int), defaultdict(int)
md5 = hashlib.md5()
for features, labels in results:
data_list = [
features[movielens.USER_COLUMN].flatten(),
features[movielens.ITEM_COLUMN].flatten(),
features[rconst.VALID_POINT_MASK].flatten(),
labels.flatten()
]
for i in data_list:
md5.update(i.tobytes())
for u, i, v, l in zip(*data_list):
if not v:
continue # ignore padding
if l:
positive_counts[(u, i)] += 1
else:
negative_counts[(u, i)] += 1
self.assertRegexpMatches(md5.hexdigest(), FRESH_RANDOMNESS_MD5)
# The positive examples should appear exactly once each epoch
self.assertAllEqual(list(positive_counts.values()),
[train_epochs for _ in positive_counts])
# The threshold for the negatives is heuristic, but in general repeats are
# expected, but should not appear too frequently.
pair_cardinality = NUM_USERS * NUM_ITEMS
neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)
# Approximation for the expectation number of times that a particular
# negative will appear in a given epoch. Implicit in this calculation is the
# treatment of all negative pairs as equally likely. Normally is not
# necessarily reasonable; however the generation in self.setUp() will
# approximate this behavior sufficiently for heuristic testing.
e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality
# The frequency of occurance of a given negative pair should follow an
# approximately binomial distribution in the limit that the cardinality of
# the negative pair set >> number of samples per epoch.
approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
n=train_epochs, p=e_sample)
# Tally the actual observed counts.
count_distribution = [0 for _ in range(train_epochs + 1)]
for i in negative_counts.values():
i = min([i, train_epochs]) # round down tail for simplicity.
count_distribution[i] += 1
count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])
# Check that the frequency of negative pairs is approximately binomial.
for i in range(train_epochs + 1):
if approx_pdf[i] < 0.05:
continue # Variance will be high at the tails.
observed_fraction = count_distribution[i] / neg_pair_cardinality
deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
(observed_fraction + approx_pdf[i]))
self.assertLess(deviation, 0.2)
def test_end_to_end_materialized(self):
self._test_end_to_end("materialized")
def test_end_to_end_bisection(self):
self._test_end_to_end("bisection")
def test_fresh_randomness_materialized(self):
self._test_fresh_randomness("materialized")
def test_fresh_randomness_bisection(self):
self._test_fresh_randomness("bisection")
if __name__ == "__main__":
tf.test.main()
|