File size: 4,736 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for autoaugment."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

from absl.testing import parameterized

import tensorflow as tf

from official.vision.image_classification import augment


def get_dtype_test_cases():
  return [
      ('uint8', tf.uint8),
      ('int32', tf.int32),
      ('float16', tf.float16),
      ('float32', tf.float32),
  ]


@parameterized.named_parameters(get_dtype_test_cases())
class TransformsTest(parameterized.TestCase, tf.test.TestCase):
  """Basic tests for fundamental transformations."""

  def test_to_from_4d(self, dtype):
    for shape in [(10, 10), (10, 10, 10), (10, 10, 10, 10)]:
      original_ndims = len(shape)
      image = tf.zeros(shape, dtype=dtype)
      image_4d = augment.to_4d(image)
      self.assertEqual(4, tf.rank(image_4d))
      self.assertAllEqual(image, augment.from_4d(image_4d, original_ndims))

  def test_transform(self, dtype):
    image = tf.constant([[1, 2], [3, 4]], dtype=dtype)
    self.assertAllEqual(augment.transform(image, transforms=[1]*8),
                        [[4, 4], [4, 4]])

  def test_translate(self, dtype):
    image = tf.constant(
        [[1, 0, 1, 0],
         [0, 1, 0, 1],
         [1, 0, 1, 0],
         [0, 1, 0, 1]],
        dtype=dtype)
    translations = [-1, -1]
    translated = augment.translate(image=image,
                                   translations=translations)
    expected = [
        [1, 0, 1, 1],
        [0, 1, 0, 0],
        [1, 0, 1, 1],
        [1, 0, 1, 1]]
    self.assertAllEqual(translated, expected)

  def test_translate_shapes(self, dtype):
    translation = [0, 0]
    for shape in [(3, 3), (5, 5), (224, 224, 3)]:
      image = tf.zeros(shape, dtype=dtype)
      self.assertAllEqual(image, augment.translate(image, translation))

  def test_translate_invalid_translation(self, dtype):
    image = tf.zeros((1, 1), dtype=dtype)
    invalid_translation = [[[1, 1]]]
    with self.assertRaisesRegex(TypeError, 'rank 1 or 2'):
      _ = augment.translate(image, invalid_translation)

  def test_rotate(self, dtype):
    image = tf.reshape(tf.cast(tf.range(9), dtype), (3, 3))
    rotation = 90.
    transformed = augment.rotate(image=image, degrees=rotation)
    expected = [[2, 5, 8],
                [1, 4, 7],
                [0, 3, 6]]
    self.assertAllEqual(transformed, expected)

  def test_rotate_shapes(self, dtype):
    degrees = 0.
    for shape in [(3, 3), (5, 5), (224, 224, 3)]:
      image = tf.zeros(shape, dtype=dtype)
      self.assertAllEqual(image, augment.rotate(image, degrees))


class AutoaugmentTest(tf.test.TestCase):

  def test_autoaugment(self):
    """Smoke test to be sure there are no syntax errors."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)

    augmenter = augment.AutoAugment()
    aug_image = augmenter.distort(image)

    self.assertEqual((224, 224, 3), aug_image.shape)

  def test_randaug(self):
    """Smoke test to be sure there are no syntax errors."""
    image = tf.zeros((224, 224, 3), dtype=tf.uint8)

    augmenter = augment.RandAugment()
    aug_image = augmenter.distort(image)

    self.assertEqual((224, 224, 3), aug_image.shape)

  def test_all_policy_ops(self):
    """Smoke test to be sure all augmentation functions can execute."""

    prob = 1
    magnitude = 10
    replace_value = [128] * 3
    cutout_const = 100
    translate_const = 250

    image = tf.ones((224, 224, 3), dtype=tf.uint8)

    for op_name in augment.NAME_TO_FUNC:
      func, _, args = augment._parse_policy_info(op_name,
                                                 prob,
                                                 magnitude,
                                                 replace_value,
                                                 cutout_const,
                                                 translate_const)
      image = func(image, *args)

    self.assertEqual((224, 224, 3), image.shape)

if __name__ == '__main__':
  tf.test.main()