Spaces:
Running
Running
File size: 13,601 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocessing functions for images."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import tensorflow as tf
from typing import List, Optional, Text, Tuple
from official.vision.image_classification import augment
# Calculated from the ImageNet training set
MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)
IMAGE_SIZE = 224
CROP_PADDING = 32
def mean_image_subtraction(
image_bytes: tf.Tensor,
means: Tuple[float, ...],
num_channels: int = 3,
dtype: tf.dtypes.DType = tf.float32,
) -> tf.Tensor:
"""Subtracts the given means from each image channel.
For example:
means = [123.68, 116.779, 103.939]
image_bytes = mean_image_subtraction(image_bytes, means)
Note that the rank of `image` must be known.
Args:
image_bytes: a tensor of size [height, width, C].
means: a C-vector of values to subtract from each channel.
num_channels: number of color channels in the image that will be distorted.
dtype: the dtype to convert the images to. Set to `None` to skip conversion.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `means`.
"""
if image_bytes.get_shape().ndims != 3:
raise ValueError('Input must be of size [height, width, C>0]')
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
# We have a 1-D tensor of means; convert to 3-D.
# Note(b/130245863): we explicitly call `broadcast` instead of simply
# expanding dimensions for better performance.
means = tf.broadcast_to(means, tf.shape(image_bytes))
if dtype is not None:
means = tf.cast(means, dtype=dtype)
return image_bytes - means
def standardize_image(
image_bytes: tf.Tensor,
stddev: Tuple[float, ...],
num_channels: int = 3,
dtype: tf.dtypes.DType = tf.float32,
) -> tf.Tensor:
"""Divides the given stddev from each image channel.
For example:
stddev = [123.68, 116.779, 103.939]
image_bytes = standardize_image(image_bytes, stddev)
Note that the rank of `image` must be known.
Args:
image_bytes: a tensor of size [height, width, C].
stddev: a C-vector of values to divide from each channel.
num_channels: number of color channels in the image that will be distorted.
dtype: the dtype to convert the images to. Set to `None` to skip conversion.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `stddev`.
"""
if image_bytes.get_shape().ndims != 3:
raise ValueError('Input must be of size [height, width, C>0]')
if len(stddev) != num_channels:
raise ValueError('len(stddev) must match the number of channels')
# We have a 1-D tensor of stddev; convert to 3-D.
# Note(b/130245863): we explicitly call `broadcast` instead of simply
# expanding dimensions for better performance.
stddev = tf.broadcast_to(stddev, tf.shape(image_bytes))
if dtype is not None:
stddev = tf.cast(stddev, dtype=dtype)
return image_bytes / stddev
def normalize_images(features: tf.Tensor,
mean_rgb: Tuple[float, ...] = MEAN_RGB,
stddev_rgb: Tuple[float, ...] = STDDEV_RGB,
num_channels: int = 3,
dtype: tf.dtypes.DType = tf.float32,
data_format: Text = 'channels_last') -> tf.Tensor:
"""Normalizes the input image channels with the given mean and stddev.
Args:
features: `Tensor` representing decoded images in float format.
mean_rgb: the mean of the channels to subtract.
stddev_rgb: the stddev of the channels to divide.
num_channels: the number of channels in the input image tensor.
dtype: the dtype to convert the images to. Set to `None` to skip conversion.
data_format: the format of the input image tensor
['channels_first', 'channels_last'].
Returns:
A normalized image `Tensor`.
"""
# TODO(allencwang) - figure out how to use mean_image_subtraction and
# standardize_image on batches of images and replace the following.
if data_format == 'channels_first':
stats_shape = [num_channels, 1, 1]
else:
stats_shape = [1, 1, num_channels]
if dtype is not None:
features = tf.image.convert_image_dtype(features, dtype=dtype)
if mean_rgb is not None:
mean_rgb = tf.constant(mean_rgb,
shape=stats_shape,
dtype=features.dtype)
mean_rgb = tf.broadcast_to(mean_rgb, tf.shape(features))
features = features - mean_rgb
if stddev_rgb is not None:
stddev_rgb = tf.constant(stddev_rgb,
shape=stats_shape,
dtype=features.dtype)
stddev_rgb = tf.broadcast_to(stddev_rgb, tf.shape(features))
features = features / stddev_rgb
return features
def decode_and_center_crop(image_bytes: tf.Tensor,
image_size: int = IMAGE_SIZE,
crop_padding: int = CROP_PADDING) -> tf.Tensor:
"""Crops to center of image with padding then scales image_size.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
image_size: image height/width dimension.
crop_padding: the padding size to use when centering the crop.
Returns:
A decoded and cropped image `Tensor`.
"""
decoded = image_bytes.dtype != tf.string
shape = (tf.shape(image_bytes) if decoded
else tf.image.extract_jpeg_shape(image_bytes))
image_height = shape[0]
image_width = shape[1]
padded_center_crop_size = tf.cast(
((image_size / (image_size + crop_padding)) *
tf.cast(tf.minimum(image_height, image_width), tf.float32)),
tf.int32)
offset_height = ((image_height - padded_center_crop_size) + 1) // 2
offset_width = ((image_width - padded_center_crop_size) + 1) // 2
crop_window = tf.stack([offset_height, offset_width,
padded_center_crop_size, padded_center_crop_size])
if decoded:
image = tf.image.crop_to_bounding_box(
image_bytes,
offset_height=offset_height,
offset_width=offset_width,
target_height=padded_center_crop_size,
target_width=padded_center_crop_size)
else:
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
image = resize_image(image_bytes=image,
height=image_size,
width=image_size)
return image
def decode_crop_and_flip(image_bytes: tf.Tensor) -> tf.Tensor:
"""Crops an image to a random part of the image, then randomly flips.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
Returns:
A decoded and cropped image `Tensor`.
"""
decoded = image_bytes.dtype != tf.string
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
shape = (tf.shape(image_bytes) if decoded
else tf.image.extract_jpeg_shape(image_bytes))
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
shape,
bounding_boxes=bbox,
min_object_covered=0.1,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.05, 1.0],
max_attempts=100,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, _ = sample_distorted_bounding_box
# Reassemble the bounding box in the format the crop op requires.
offset_height, offset_width, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = tf.stack([offset_height, offset_width,
target_height, target_width])
if decoded:
cropped = tf.image.crop_to_bounding_box(
image_bytes,
offset_height=offset_height,
offset_width=offset_width,
target_height=target_height,
target_width=target_width)
else:
cropped = tf.image.decode_and_crop_jpeg(image_bytes,
crop_window,
channels=3)
# Flip to add a little more random distortion in.
cropped = tf.image.random_flip_left_right(cropped)
return cropped
def resize_image(image_bytes: tf.Tensor,
height: int = IMAGE_SIZE,
width: int = IMAGE_SIZE) -> tf.Tensor:
"""Resizes an image to a given height and width.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
height: image height dimension.
width: image width dimension.
Returns:
A tensor containing the resized image.
"""
return tf.compat.v1.image.resize(
image_bytes, [height, width], method=tf.image.ResizeMethod.BILINEAR,
align_corners=False)
def preprocess_for_eval(
image_bytes: tf.Tensor,
image_size: int = IMAGE_SIZE,
num_channels: int = 3,
mean_subtract: bool = False,
standardize: bool = False,
dtype: tf.dtypes.DType = tf.float32
) -> tf.Tensor:
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
image_size: image height/width dimension.
num_channels: number of image input channels.
mean_subtract: whether or not to apply mean subtraction.
standardize: whether or not to apply standardization.
dtype: the dtype to convert the images to. Set to `None` to skip conversion.
Returns:
A preprocessed and normalized image `Tensor`.
"""
images = decode_and_center_crop(image_bytes, image_size)
images = tf.reshape(images, [image_size, image_size, num_channels])
if mean_subtract:
images = mean_image_subtraction(image_bytes=images, means=MEAN_RGB)
if standardize:
images = standardize_image(image_bytes=images, stddev=STDDEV_RGB)
if dtype is not None:
images = tf.image.convert_image_dtype(images, dtype=dtype)
return images
def load_eval_image(filename: Text, image_size: int = IMAGE_SIZE) -> tf.Tensor:
"""Reads an image from the filesystem and applies image preprocessing.
Args:
filename: a filename path of an image.
image_size: image height/width dimension.
Returns:
A preprocessed and normalized image `Tensor`.
"""
image_bytes = tf.io.read_file(filename)
image = preprocess_for_eval(image_bytes, image_size)
return image
def build_eval_dataset(filenames: List[Text],
labels: List[int] = None,
image_size: int = IMAGE_SIZE,
batch_size: int = 1) -> tf.Tensor:
"""Builds a tf.data.Dataset from a list of filenames and labels.
Args:
filenames: a list of filename paths of images.
labels: a list of labels corresponding to each image.
image_size: image height/width dimension.
batch_size: the batch size used by the dataset
Returns:
A preprocessed and normalized image `Tensor`.
"""
if labels is None:
labels = [0] * len(filenames)
filenames = tf.constant(filenames)
labels = tf.constant(labels)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(
lambda filename, label: (load_eval_image(filename, image_size), label))
dataset = dataset.batch(batch_size)
return dataset
def preprocess_for_train(image_bytes: tf.Tensor,
image_size: int = IMAGE_SIZE,
augmenter: Optional[augment.ImageAugment] = None,
mean_subtract: bool = False,
standardize: bool = False,
dtype: tf.dtypes.DType = tf.float32) -> tf.Tensor:
"""Preprocesses the given image for training.
Args:
image_bytes: `Tensor` representing an image binary of
arbitrary size of dtype tf.uint8.
image_size: image height/width dimension.
augmenter: the image augmenter to apply.
mean_subtract: whether or not to apply mean subtraction.
standardize: whether or not to apply standardization.
dtype: the dtype to convert the images to. Set to `None` to skip conversion.
Returns:
A preprocessed and normalized image `Tensor`.
"""
images = decode_crop_and_flip(image_bytes=image_bytes)
images = resize_image(images, height=image_size, width=image_size)
if mean_subtract:
images = mean_image_subtraction(image_bytes=images, means=MEAN_RGB)
if standardize:
images = standardize_image(image_bytes=images, stddev=STDDEV_RGB)
if augmenter is not None:
images = augmenter.distort(images)
if dtype is not None:
images = tf.image.convert_image_dtype(images, dtype)
return images
|