File size: 4,536 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
This folder contains a
[custom training loop (CTL)](#resnet-custom-training-loop) implementation for
ResNet50.

## Before you begin
Please refer to the [README](../README.md) in the parent directory for
information on setup and preparing the data.

## ResNet (custom training loop)

Similar to the [estimator implementation](../../../r1/resnet), the Keras
implementation has code for the ImageNet dataset. The ImageNet
version uses a ResNet50 model implemented in
[`resnet_model.py`](./resnet_model.py).


### Pretrained Models

* [ResNet50 Checkpoints](https://storage.googleapis.com/cloud-tpu-checkpoints/resnet/resnet50.tar.gz)

* ResNet50 TFHub: [feature vector](https://tfhub.dev/tensorflow/resnet_50/feature_vector/1)
and [classification](https://tfhub.dev/tensorflow/resnet_50/classification/1)

Again, if you did not download the data to the default directory, specify the
location with the `--data_dir` flag:

```bash
python3 resnet_ctl_imagenet_main.py --data_dir=/path/to/imagenet
```

There are more flag options you can specify. Here are some examples:

- `--use_synthetic_data`: when set to true, synthetic data, rather than real
data, are used;
- `--batch_size`: the batch size used for the model;
- `--model_dir`: the directory to save the model checkpoint;
- `--train_epochs`: number of epoches to run for training the model;
- `--train_steps`: number of steps to run for training the model. We now only
support a number that is smaller than the number of batches in an epoch.
- `--skip_eval`: when set to true, evaluation as well as validation during
training is skipped

For example, this is a typical command line to run with ImageNet data with
batch size 128 per GPU:

```bash
python3 -m resnet_ctl_imagenet_main.py \
    --model_dir=/tmp/model_dir/something \
    --num_gpus=2 \
    --batch_size=128 \
    --train_epochs=90 \
    --train_steps=10 \
    --use_synthetic_data=false
```

See [`common.py`](common.py) for full list of options.

### Using multiple GPUs

You can train these models on multiple GPUs using `tf.distribute.Strategy` API.
You can read more about them in this
[guide](https://www.tensorflow.org/guide/distribute_strategy).

In this example, we have made it easier to use is with just a command line flag
`--num_gpus`. By default this flag is 1 if TensorFlow is compiled with CUDA,
and 0 otherwise.

- --num_gpus=0: Uses tf.distribute.OneDeviceStrategy with CPU as the device.
- --num_gpus=1: Uses tf.distribute.OneDeviceStrategy with GPU as the device.
- --num_gpus=2+: Uses tf.distribute.MirroredStrategy to run synchronous
distributed training across the GPUs.

If you wish to run without `tf.distribute.Strategy`, you can do so by setting
`--distribution_strategy=off`.

### Running on multiple GPU hosts

You can also train these models on multiple hosts, each with GPUs, using
`tf.distribute.Strategy`.

The easiest way to run multi-host benchmarks is to set the
[`TF_CONFIG`](https://www.tensorflow.org/guide/distributed_training#TF_CONFIG)
appropriately at each host.  e.g., to run using `MultiWorkerMirroredStrategy` on
2 hosts, the `cluster` in `TF_CONFIG` should have 2 `host:port` entries, and
host `i` should have the `task` in `TF_CONFIG` set to `{"type": "worker",
"index": i}`.  `MultiWorkerMirroredStrategy` will automatically use all the
available GPUs at each host.

### Running on Cloud TPUs

Note: This model will **not** work with TPUs on Colab.

You can train the ResNet CTL model on Cloud TPUs using
`tf.distribute.TPUStrategy`. If you are not familiar with Cloud TPUs, it is
strongly recommended that you go through the
[quickstart](https://cloud.google.com/tpu/docs/quickstart) to learn how to
create a TPU and GCE VM.

To run ResNet model on a TPU, you must set `--distribution_strategy=tpu` and
`--tpu=$TPU_NAME`, where `$TPU_NAME` the name of your TPU in the Cloud Console.
From a GCE VM, you can run the following command to train ResNet for one epoch
on a v2-8 or v3-8 TPU by setting `TRAIN_EPOCHS` to 1:

```bash
python3 resnet_ctl_imagenet_main.py \
  --tpu=$TPU_NAME \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --batch_size=1024 \
  --steps_per_loop=500 \
  --train_epochs=$TRAIN_EPOCHS \
  --use_synthetic_data=false \
  --dtype=fp32 \
  --enable_eager=true \
  --enable_tensorboard=true \
  --distribution_strategy=tpu \
  --log_steps=50 \
  --single_l2_loss_op=true \
  --use_tf_function=true
```

To train the ResNet to convergence, run it for 90 epochs by setting
`TRAIN_EPOCHS` to 90.

Note: `$MODEL_DIR` and `$DATA_DIR` must be GCS paths.