Spaces:
Running
Running
File size: 16,397 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common util functions and classes used by both keras cifar and imagenet."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
import tensorflow as tf
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
import tensorflow_model_optimization as tfmot
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
FLAGS = flags.FLAGS
BASE_LEARNING_RATE = 0.1 # This matches Jing's version.
TRAIN_TOP_1 = 'training_accuracy_top_1'
LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
class PiecewiseConstantDecayWithWarmup(
tf.keras.optimizers.schedules.LearningRateSchedule):
"""Piecewise constant decay with warmup schedule."""
def __init__(self, batch_size, epoch_size, warmup_epochs, boundaries,
multipliers, compute_lr_on_cpu=True, name=None):
super(PiecewiseConstantDecayWithWarmup, self).__init__()
if len(boundaries) != len(multipliers) - 1:
raise ValueError('The length of boundaries must be 1 less than the '
'length of multipliers')
base_lr_batch_size = 256
steps_per_epoch = epoch_size // batch_size
self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
self.step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
self.lr_values = [self.rescaled_lr * m for m in multipliers]
self.warmup_steps = warmup_epochs * steps_per_epoch
self.compute_lr_on_cpu = compute_lr_on_cpu
self.name = name
self.learning_rate_ops_cache = {}
def __call__(self, step):
if tf.executing_eagerly():
return self._get_learning_rate(step)
# In an eager function or graph, the current implementation of optimizer
# repeatedly call and thus create ops for the learning rate schedule. To
# avoid this, we cache the ops if not executing eagerly.
graph = tf.compat.v1.get_default_graph()
if graph not in self.learning_rate_ops_cache:
if self.compute_lr_on_cpu:
with tf.device('/device:CPU:0'):
self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
else:
self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
return self.learning_rate_ops_cache[graph]
def _get_learning_rate(self, step):
"""Compute learning rate at given step."""
with tf.name_scope('PiecewiseConstantDecayWithWarmup'):
def warmup_lr(step):
return self.rescaled_lr * (
tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
def piecewise_lr(step):
return tf.compat.v1.train.piecewise_constant(
step, self.step_boundaries, self.lr_values)
return tf.cond(step < self.warmup_steps,
lambda: warmup_lr(step),
lambda: piecewise_lr(step))
def get_config(self):
return {
'rescaled_lr': self.rescaled_lr,
'step_boundaries': self.step_boundaries,
'lr_values': self.lr_values,
'warmup_steps': self.warmup_steps,
'compute_lr_on_cpu': self.compute_lr_on_cpu,
'name': self.name
}
def get_optimizer(learning_rate=0.1):
"""Returns optimizer to use."""
# The learning_rate is overwritten at the beginning of each step by callback.
return gradient_descent_v2.SGD(learning_rate=learning_rate, momentum=0.9)
def get_callbacks(
pruning_method=None,
enable_checkpoint_and_export=False,
model_dir=None):
"""Returns common callbacks."""
time_callback = keras_utils.TimeHistory(
FLAGS.batch_size,
FLAGS.log_steps,
logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
callbacks = [time_callback]
if FLAGS.enable_tensorboard:
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=FLAGS.model_dir,
profile_batch=FLAGS.profile_steps)
callbacks.append(tensorboard_callback)
is_pruning_enabled = pruning_method is not None
if is_pruning_enabled:
callbacks.append(tfmot.sparsity.keras.UpdatePruningStep())
if model_dir is not None:
callbacks.append(tfmot.sparsity.keras.PruningSummaries(
log_dir=model_dir, profile_batch=0))
if enable_checkpoint_and_export:
if model_dir is not None:
ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
callbacks.append(
tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
save_weights_only=True))
return callbacks
def build_stats(history, eval_output, callbacks):
"""Normalizes and returns dictionary of stats.
Args:
history: Results of the training step. Supports both categorical_accuracy
and sparse_categorical_accuracy.
eval_output: Output of the eval step. Assumes first value is eval_loss and
second value is accuracy_top_1.
callbacks: a list of callbacks which might include a time history callback
used during keras.fit.
Returns:
Dictionary of normalized results.
"""
stats = {}
if eval_output:
stats['accuracy_top_1'] = float(eval_output[1])
stats['eval_loss'] = float(eval_output[0])
if history and history.history:
train_hist = history.history
# Gets final loss from training.
stats['loss'] = float(train_hist['loss'][-1])
# Gets top_1 training accuracy.
if 'categorical_accuracy' in train_hist:
stats[TRAIN_TOP_1] = float(train_hist['categorical_accuracy'][-1])
elif 'sparse_categorical_accuracy' in train_hist:
stats[TRAIN_TOP_1] = float(train_hist['sparse_categorical_accuracy'][-1])
elif 'accuracy' in train_hist:
stats[TRAIN_TOP_1] = float(train_hist['accuracy'][-1])
if not callbacks:
return stats
# Look for the time history callback which was used during keras.fit
for callback in callbacks:
if isinstance(callback, keras_utils.TimeHistory):
timestamp_log = callback.timestamp_log
stats['step_timestamp_log'] = timestamp_log
stats['train_finish_time'] = callback.train_finish_time
if callback.epoch_runtime_log:
stats['avg_exp_per_second'] = callback.average_examples_per_second
return stats
def define_keras_flags(
dynamic_loss_scale=True,
model=False,
optimizer=False,
pretrained_filepath=False):
"""Define flags for Keras models."""
flags_core.define_base(clean=True, num_gpu=True, run_eagerly=True,
train_epochs=True, epochs_between_evals=True,
distribution_strategy=True)
flags_core.define_performance(num_parallel_calls=False,
synthetic_data=True,
dtype=True,
all_reduce_alg=True,
num_packs=True,
tf_gpu_thread_mode=True,
datasets_num_private_threads=True,
dynamic_loss_scale=dynamic_loss_scale,
loss_scale=True,
fp16_implementation=True,
tf_data_experimental_slack=True,
enable_xla=True,
training_dataset_cache=True)
flags_core.define_image()
flags_core.define_benchmark()
flags_core.define_distribution()
flags.adopt_module_key_flags(flags_core)
flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
# TODO(b/135607288): Remove this flag once we understand the root cause of
# slowdown when setting the learning phase in Keras backend.
flags.DEFINE_boolean(
name='set_learning_phase_to_train', default=True,
help='If skip eval, also set Keras learning phase to 1 (training).')
flags.DEFINE_boolean(
name='explicit_gpu_placement', default=False,
help='If not using distribution strategy, explicitly set device scope '
'for the Keras training loop.')
flags.DEFINE_boolean(name='use_trivial_model', default=False,
help='Whether to use a trivial Keras model.')
flags.DEFINE_boolean(name='report_accuracy_metrics', default=True,
help='Report metrics during training and evaluation.')
flags.DEFINE_boolean(name='use_tensor_lr', default=True,
help='Use learning rate tensor instead of a callback.')
flags.DEFINE_boolean(
name='enable_tensorboard', default=False,
help='Whether to enable Tensorboard callback.')
flags.DEFINE_string(
name='profile_steps', default=None,
help='Save profiling data to model dir at given range of global steps. The '
'value must be a comma separated pair of positive integers, specifying '
'the first and last step to profile. For example, "--profile_steps=2,4" '
'triggers the profiler to process 3 steps, starting from the 2nd step. '
'Note that profiler has a non-trivial performance overhead, and the '
'output file can be gigantic if profiling many steps.')
flags.DEFINE_integer(
name='train_steps', default=None,
help='The number of steps to run for training. If it is larger than '
'# batches per epoch, then use # batches per epoch. This flag will be '
'ignored if train_epochs is set to be larger than 1. ')
flags.DEFINE_boolean(
name='batchnorm_spatial_persistent', default=True,
help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
flags.DEFINE_boolean(
name='enable_get_next_as_optional', default=False,
help='Enable get_next_as_optional behavior in DistributedIterator.')
flags.DEFINE_boolean(
name='enable_checkpoint_and_export', default=False,
help='Whether to enable a checkpoint callback and export the savedmodel.')
flags.DEFINE_string(
name='tpu', default='', help='TPU address to connect to.')
flags.DEFINE_integer(
name='steps_per_loop',
default=500,
help='Number of steps per training loop. Only training step happens '
'inside the loop. Callbacks will not be called inside. Will be capped at '
'steps per epoch.')
flags.DEFINE_boolean(
name='use_tf_while_loop',
default=True,
help='Whether to build a tf.while_loop inside the training loop on the '
'host. Setting it to True is critical to have peak performance on '
'TPU.')
if model:
flags.DEFINE_string('model', 'resnet50_v1.5',
'Name of model preset. (mobilenet, resnet50_v1.5)')
if optimizer:
flags.DEFINE_string('optimizer', 'resnet50_default',
'Name of optimizer preset. '
'(mobilenet_default, resnet50_default)')
# TODO(kimjaehong): Replace as general hyper-params not only for mobilenet.
flags.DEFINE_float('initial_learning_rate_per_sample', 0.00007,
'Initial value of learning rate per sample for '
'mobilenet_default.')
flags.DEFINE_float('lr_decay_factor', 0.94,
'Learning rate decay factor for mobilenet_default.')
flags.DEFINE_float('num_epochs_per_decay', 2.5,
'Number of epochs per decay for mobilenet_default.')
if pretrained_filepath:
flags.DEFINE_string('pretrained_filepath', '',
'Pretrained file path.')
def get_synth_data(height, width, num_channels, num_classes, dtype):
"""Creates a set of synthetic random data.
Args:
height: Integer height that will be used to create a fake image tensor.
width: Integer width that will be used to create a fake image tensor.
num_channels: Integer depth that will be used to create a fake image tensor.
num_classes: Number of classes that should be represented in the fake labels
tensor
dtype: Data type for features/images.
Returns:
A tuple of tensors representing the inputs and labels.
"""
# Synthetic input should be within [0, 255].
inputs = tf.random.truncated_normal([height, width, num_channels],
dtype=dtype,
mean=127,
stddev=60,
name='synthetic_inputs')
labels = tf.random.uniform([1],
minval=0,
maxval=num_classes - 1,
dtype=tf.int32,
name='synthetic_labels')
return inputs, labels
def define_pruning_flags():
"""Define flags for pruning methods."""
flags.DEFINE_string('pruning_method', None,
'Pruning method.'
'None (no pruning) or polynomial_decay.')
flags.DEFINE_float('pruning_initial_sparsity', 0.0,
'Initial sparsity for pruning.')
flags.DEFINE_float('pruning_final_sparsity', 0.5,
'Final sparsity for pruning.')
flags.DEFINE_integer('pruning_begin_step', 0,
'Begin step for pruning.')
flags.DEFINE_integer('pruning_end_step', 100000,
'End step for pruning.')
flags.DEFINE_integer('pruning_frequency', 100,
'Frequency for pruning.')
def get_synth_input_fn(height, width, num_channels, num_classes,
dtype=tf.float32, drop_remainder=True):
"""Returns an input function that returns a dataset with random data.
This input_fn returns a data set that iterates over a set of random data and
bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
copy is still included. This used to find the upper throughput bound when
tuning the full input pipeline.
Args:
height: Integer height that will be used to create a fake image tensor.
width: Integer width that will be used to create a fake image tensor.
num_channels: Integer depth that will be used to create a fake image tensor.
num_classes: Number of classes that should be represented in the fake labels
tensor
dtype: Data type for features/images.
drop_remainder: A boolean indicates whether to drop the remainder of the
batches. If True, the batch dimension will be static.
Returns:
An input_fn that can be used in place of a real one to return a dataset
that can be used for iteration.
"""
# pylint: disable=unused-argument
def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
"""Returns dataset filled with random data."""
inputs, labels = get_synth_data(height=height,
width=width,
num_channels=num_channels,
num_classes=num_classes,
dtype=dtype)
# Cast to float32 for Keras model.
labels = tf.cast(labels, dtype=tf.float32)
data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
# `drop_remainder` will make dataset produce outputs with known shapes.
data = data.batch(batch_size, drop_remainder=drop_remainder)
data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
return data
return input_fn
def set_cudnn_batchnorm_mode():
"""Set CuDNN batchnorm mode for better performance.
Note: Spatial Persistent mode may lead to accuracy losses for certain
models.
"""
if FLAGS.batchnorm_spatial_persistent:
os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
else:
os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)
|