Spaces:
Running
Running
File size: 2,395 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configuration definitions for ResNet losses, learning rates, and optimizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Mapping
import dataclasses
from official.modeling.hyperparams import base_config
from official.vision.image_classification.configs import base_configs
_RESNET_LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
_RESNET_LR_BOUNDARIES = list(p[1] for p in _RESNET_LR_SCHEDULE[1:])
_RESNET_LR_MULTIPLIERS = list(p[0] for p in _RESNET_LR_SCHEDULE)
_RESNET_LR_WARMUP_EPOCHS = _RESNET_LR_SCHEDULE[0][1]
@dataclasses.dataclass
class ResNetModelConfig(base_configs.ModelConfig):
"""Configuration for the ResNet model."""
name: str = 'ResNet'
num_classes: int = 1000
model_params: base_config.Config = dataclasses.field(
default_factory=lambda: {
'num_classes': 1000,
'batch_size': None,
'use_l2_regularizer': True,
'rescale_inputs': False,
})
loss: base_configs.LossConfig = base_configs.LossConfig(
name='sparse_categorical_crossentropy')
optimizer: base_configs.OptimizerConfig = base_configs.OptimizerConfig(
name='momentum',
decay=0.9,
epsilon=0.001,
momentum=0.9,
moving_average_decay=None)
learning_rate: base_configs.LearningRateConfig = (
base_configs.LearningRateConfig(
name='piecewise_constant_with_warmup',
examples_per_epoch=1281167,
warmup_epochs=_RESNET_LR_WARMUP_EPOCHS,
boundaries=_RESNET_LR_BOUNDARIES,
multipliers=_RESNET_LR_MULTIPLIERS))
|