File size: 2,395 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configuration definitions for ResNet losses, learning rates, and optimizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from typing import Any, Mapping

import dataclasses

from official.modeling.hyperparams import base_config
from official.vision.image_classification.configs import base_configs


_RESNET_LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
_RESNET_LR_BOUNDARIES = list(p[1] for p in _RESNET_LR_SCHEDULE[1:])
_RESNET_LR_MULTIPLIERS = list(p[0] for p in _RESNET_LR_SCHEDULE)
_RESNET_LR_WARMUP_EPOCHS = _RESNET_LR_SCHEDULE[0][1]


@dataclasses.dataclass
class ResNetModelConfig(base_configs.ModelConfig):
  """Configuration for the ResNet model."""
  name: str = 'ResNet'
  num_classes: int = 1000
  model_params: base_config.Config = dataclasses.field(
      default_factory=lambda: {
          'num_classes': 1000,
          'batch_size': None,
          'use_l2_regularizer': True,
          'rescale_inputs': False,
      })
  loss: base_configs.LossConfig = base_configs.LossConfig(
      name='sparse_categorical_crossentropy')
  optimizer: base_configs.OptimizerConfig = base_configs.OptimizerConfig(
      name='momentum',
      decay=0.9,
      epsilon=0.001,
      momentum=0.9,
      moving_average_decay=None)
  learning_rate: base_configs.LearningRateConfig = (
      base_configs.LearningRateConfig(
          name='piecewise_constant_with_warmup',
          examples_per_epoch=1281167,
          warmup_epochs=_RESNET_LR_WARMUP_EPOCHS,
          boundaries=_RESNET_LR_BOUNDARIES,
          multipliers=_RESNET_LR_MULTIPLIERS))