File size: 11,118 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet50 model for Keras.

Adapted from tf.keras.applications.resnet50.ResNet50().
This is ResNet model version 1.5.

Related papers/blogs:
- https://arxiv.org/abs/1512.03385
- https://arxiv.org/pdf/1603.05027v2.pdf
- http://torch.ch/blog/2016/02/04/resnets.html

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from tensorflow.python.keras import backend
from tensorflow.python.keras import initializers
from tensorflow.python.keras import models
from tensorflow.python.keras import regularizers
from official.vision.image_classification.resnet import imagenet_preprocessing

layers = tf.keras.layers


def _gen_l2_regularizer(use_l2_regularizer=True, l2_weight_decay=1e-4):
  return regularizers.l2(l2_weight_decay) if use_l2_regularizer else None


def identity_block(input_tensor,
                   kernel_size,
                   filters,
                   stage,
                   block,
                   use_l2_regularizer=True,
                   batch_norm_decay=0.9,
                   batch_norm_epsilon=1e-5):
  """The identity block is the block that has no conv layer at shortcut.

  Args:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
    use_l2_regularizer: whether to use L2 regularizer on Conv layer.
    batch_norm_decay: Moment of batch norm layers.
    batch_norm_epsilon: Epsilon of batch borm layers.

  Returns:
    Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(
      filters1, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2a')(
          input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '2a')(
          x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(
      filters2,
      kernel_size,
      padding='same',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2b')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '2b')(
          x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(
      filters3, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2c')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '2c')(
          x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x


def conv_block(input_tensor,
               kernel_size,
               filters,
               stage,
               block,
               strides=(2, 2),
               use_l2_regularizer=True,
               batch_norm_decay=0.9,
               batch_norm_epsilon=1e-5):
  """A block that has a conv layer at shortcut.

  Note that from stage 3,
  the second conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well

  Args:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
    strides: Strides for the second conv layer in the block.
    use_l2_regularizer: whether to use L2 regularizer on Conv layer.
    batch_norm_decay: Moment of batch norm layers.
    batch_norm_epsilon: Epsilon of batch borm layers.

  Returns:
    Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(
      filters1, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2a')(
          input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '2a')(
          x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(
      filters2,
      kernel_size,
      strides=strides,
      padding='same',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2b')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '2b')(
          x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(
      filters3, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2c')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '2c')(
          x)

  shortcut = layers.Conv2D(
      filters3, (1, 1),
      strides=strides,
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '1')(
          input_tensor)
  shortcut = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name=bn_name_base + '1')(
          shortcut)

  x = layers.add([x, shortcut])
  x = layers.Activation('relu')(x)
  return x


def resnet50(num_classes,
             batch_size=None,
             use_l2_regularizer=True,
             rescale_inputs=False,
             batch_norm_decay=0.9,
             batch_norm_epsilon=1e-5):
  """Instantiates the ResNet50 architecture.

  Args:
    num_classes: `int` number of classes for image classification.
    batch_size: Size of the batches for each step.
    use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer.
    rescale_inputs: whether to rescale inputs from 0 to 1.
    batch_norm_decay: Moment of batch norm layers.
    batch_norm_epsilon: Epsilon of batch borm layers.

  Returns:
      A Keras model instance.
  """
  input_shape = (224, 224, 3)
  img_input = layers.Input(shape=input_shape, batch_size=batch_size)
  if rescale_inputs:
    # Hub image modules expect inputs in the range [0, 1]. This rescales these
    # inputs to the range expected by the trained model.
    x = layers.Lambda(
        lambda x: x * 255.0 - backend.constant(
            imagenet_preprocessing.CHANNEL_MEANS,
            shape=[1, 1, 3],
            dtype=x.dtype),
        name='rescale')(
            img_input)
  else:
    x = img_input

  if backend.image_data_format() == 'channels_first':
    x = layers.Permute((3, 1, 2))(x)
    bn_axis = 1
  else:  # channels_last
    bn_axis = 3

  block_config = dict(
      use_l2_regularizer=use_l2_regularizer,
      batch_norm_decay=batch_norm_decay,
      batch_norm_epsilon=batch_norm_epsilon)
  x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x)
  x = layers.Conv2D(
      64, (7, 7),
      strides=(2, 2),
      padding='valid',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name='conv1')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=batch_norm_decay,
      epsilon=batch_norm_epsilon,
      name='bn_conv1')(
          x)
  x = layers.Activation('relu')(x)
  x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

  x = conv_block(
      x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), **block_config)
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', **block_config)
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', **block_config)

  x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', **block_config)
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', **block_config)
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', **block_config)
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', **block_config)

  x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', **block_config)
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', **block_config)
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', **block_config)
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', **block_config)
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', **block_config)
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', **block_config)

  x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', **block_config)
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', **block_config)
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', **block_config)

  x = layers.GlobalAveragePooling2D()(x)
  x = layers.Dense(
      num_classes,
      kernel_initializer=initializers.RandomNormal(stddev=0.01),
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      bias_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name='fc1000')(
          x)

  # A softmax that is followed by the model loss must be done cannot be done
  # in float16 due to numeric issues. So we pass dtype=float32.
  x = layers.Activation('softmax', dtype='float32')(x)

  # Create model.
  return models.Model(img_input, x, name='resnet50')