Spaces:
Running
Running
File size: 2,299 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A script to export TF-Hub SavedModel."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import os
from absl import app
from absl import flags
import tensorflow as tf
from official.vision.image_classification.resnet import imagenet_preprocessing
from official.vision.image_classification.resnet import resnet_model
FLAGS = flags.FLAGS
flags.DEFINE_string("model_path", None,
"File path to TF model checkpoint or H5 file.")
flags.DEFINE_string("export_path", None,
"TF-Hub SavedModel destination path to export.")
def export_tfhub(model_path, hub_destination):
"""Restores a tf.keras.Model and saves for TF-Hub."""
model = resnet_model.resnet50(
num_classes=imagenet_preprocessing.NUM_CLASSES, rescale_inputs=True)
model.load_weights(model_path)
model.save(
os.path.join(hub_destination, "classification"), include_optimizer=False)
# Extracts a sub-model to use pooling feature vector as model output.
image_input = model.get_layer(index=0).get_output_at(0)
feature_vector_output = model.get_layer(name="reduce_mean").get_output_at(0)
hub_model = tf.keras.Model(image_input, feature_vector_output)
# Exports a SavedModel.
hub_model.save(
os.path.join(hub_destination, "feature-vector"), include_optimizer=False)
def main(argv):
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
export_tfhub(FLAGS.model_path, FLAGS.export_path)
if __name__ == "__main__":
app.run(main)
|