File size: 6,882 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Program which runs evaluation of Imagenet 64x64 and TinyImagenet models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from absl import app
from absl import flags

import tensorflow as tf

import adversarial_attack
import model_lib
from datasets import dataset_factory

FLAGS = flags.FLAGS


flags.DEFINE_string('train_dir', None,
                    'Training directory. If specified then this program '
                    'runs in continuous evaluation mode.')

flags.DEFINE_string('checkpoint_path', None,
                    'Path to the file with checkpoint. If specified then '
                    'this program evaluates only provided checkpoint one time.')

flags.DEFINE_string('output_file', None,
                    'Name of output file. Used only in single evaluation mode.')

flags.DEFINE_string('eval_name', 'default', 'Name for eval subdirectory.')

flags.DEFINE_string('master', '', 'Tensorflow master.')

flags.DEFINE_string('model_name', 'resnet_v2_50', 'Name of the model.')

flags.DEFINE_string('adv_method', 'clean',
                    'Method which is used to generate adversarial examples.')

flags.DEFINE_string('dataset', 'imagenet',
                    'Dataset: "tiny_imagenet" or "imagenet".')

flags.DEFINE_integer('dataset_image_size', 64,
                     'Size of the images in the dataset.')

flags.DEFINE_string('hparams', '', 'Hyper parameters.')

flags.DEFINE_string('split_name', 'validation', 'Name of the split.')

flags.DEFINE_float('moving_average_decay', 0.9999,
                   'The decay to use for the moving average.')

flags.DEFINE_integer('eval_interval_secs', 120,
                     'The frequency, in seconds, with which evaluation is run.')

flags.DEFINE_integer(
    'num_examples', -1,
    'If positive - maximum number of example to use for evaluation.')

flags.DEFINE_bool('eval_once', False,
                  'If true then evaluate model only once.')

flags.DEFINE_string('trainable_scopes', None,
                    'If set then it defines list of variable scopes for '
                    'trainable variables.')


def main(_):
  if not FLAGS.train_dir and not FLAGS.checkpoint_path:
    print('Either --train_dir or --checkpoint_path flags has to be provided.')
  if FLAGS.train_dir and FLAGS.checkpoint_path:
    print('Only one of --train_dir or --checkpoint_path should be provided.')
  params = model_lib.default_hparams()
  params.parse(FLAGS.hparams)
  tf.logging.info('User provided hparams: %s', FLAGS.hparams)
  tf.logging.info('All hyper parameters: %s', params)
  batch_size = params.eval_batch_size
  graph = tf.Graph()
  with graph.as_default():
    # dataset
    dataset, num_examples, num_classes, bounds = dataset_factory.get_dataset(
        FLAGS.dataset,
        FLAGS.split_name,
        batch_size,
        FLAGS.dataset_image_size,
        is_training=False)
    dataset_iterator = dataset.make_one_shot_iterator()
    images, labels = dataset_iterator.get_next()
    if FLAGS.num_examples > 0:
      num_examples = min(num_examples, FLAGS.num_examples)

    # setup model
    global_step = tf.train.get_or_create_global_step()
    model_fn_two_args = model_lib.get_model(FLAGS.model_name, num_classes)
    model_fn = lambda x: model_fn_two_args(x, is_training=False)
    if not FLAGS.adv_method or FLAGS.adv_method == 'clean':
      logits = model_fn(images)
    else:
      adv_examples = adversarial_attack.generate_adversarial_examples(
          images, bounds, model_fn, FLAGS.adv_method)
      logits = model_fn(adv_examples)

    # update trainable variables if fine tuning is used
    model_lib.filter_trainable_variables(FLAGS.trainable_scopes)

    # Setup the moving averages
    if FLAGS.moving_average_decay and (FLAGS.moving_average_decay > 0):
      variable_averages = tf.train.ExponentialMovingAverage(
          FLAGS.moving_average_decay, global_step)
      variables_to_restore = variable_averages.variables_to_restore(
          tf.contrib.framework.get_model_variables())
      variables_to_restore[global_step.op.name] = global_step
    else:
      variables_to_restore = tf.contrib.framework.get_variables_to_restore()

    # Setup evaluation metric
    with tf.name_scope('Eval'):
      names_to_values, names_to_updates = (
          tf.contrib.metrics.aggregate_metric_map({
              'Accuracy': tf.metrics.accuracy(labels, tf.argmax(logits, 1)),
              'Top5': tf.metrics.recall_at_k(tf.to_int64(labels), logits, 5)
          }))

      for name, value in names_to_values.iteritems():
        tf.summary.scalar(name, value)

    # Run evaluation
    num_batches = int(num_examples / batch_size)
    if FLAGS.train_dir:
      output_dir = os.path.join(FLAGS.train_dir, FLAGS.eval_name)
      if not tf.gfile.Exists(output_dir):
        tf.gfile.MakeDirs(output_dir)
      tf.contrib.training.evaluate_repeatedly(
          FLAGS.train_dir,
          master=FLAGS.master,
          scaffold=tf.train.Scaffold(
              saver=tf.train.Saver(variables_to_restore)),
          eval_ops=names_to_updates.values(),
          eval_interval_secs=FLAGS.eval_interval_secs,
          hooks=[
              tf.contrib.training.StopAfterNEvalsHook(num_batches),
              tf.contrib.training.SummaryAtEndHook(output_dir),
              tf.train.LoggingTensorHook(names_to_values, at_end=True),
          ],
          max_number_of_evaluations=1 if FLAGS.eval_once else None)
    else:
      result = tf.contrib.training.evaluate_once(
          FLAGS.checkpoint_path,
          master=FLAGS.master,
          scaffold=tf.train.Scaffold(
              saver=tf.train.Saver(variables_to_restore)),
          eval_ops=names_to_updates.values(),
          final_ops=names_to_values,
          hooks=[
              tf.contrib.training.StopAfterNEvalsHook(num_batches),
              tf.train.LoggingTensorHook(names_to_values, at_end=True),
          ])
      if FLAGS.output_file:
        with tf.gfile.Open(FLAGS.output_file, 'a') as f:
          f.write('%s,%.3f,%.3f\n'
                  % (FLAGS.eval_name, result['Accuracy'], result['Top5']))


if __name__ == '__main__':
  app.run(main)