Spaces:
Running
Running
File size: 6,882 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Program which runs evaluation of Imagenet 64x64 and TinyImagenet models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import tensorflow as tf
import adversarial_attack
import model_lib
from datasets import dataset_factory
FLAGS = flags.FLAGS
flags.DEFINE_string('train_dir', None,
'Training directory. If specified then this program '
'runs in continuous evaluation mode.')
flags.DEFINE_string('checkpoint_path', None,
'Path to the file with checkpoint. If specified then '
'this program evaluates only provided checkpoint one time.')
flags.DEFINE_string('output_file', None,
'Name of output file. Used only in single evaluation mode.')
flags.DEFINE_string('eval_name', 'default', 'Name for eval subdirectory.')
flags.DEFINE_string('master', '', 'Tensorflow master.')
flags.DEFINE_string('model_name', 'resnet_v2_50', 'Name of the model.')
flags.DEFINE_string('adv_method', 'clean',
'Method which is used to generate adversarial examples.')
flags.DEFINE_string('dataset', 'imagenet',
'Dataset: "tiny_imagenet" or "imagenet".')
flags.DEFINE_integer('dataset_image_size', 64,
'Size of the images in the dataset.')
flags.DEFINE_string('hparams', '', 'Hyper parameters.')
flags.DEFINE_string('split_name', 'validation', 'Name of the split.')
flags.DEFINE_float('moving_average_decay', 0.9999,
'The decay to use for the moving average.')
flags.DEFINE_integer('eval_interval_secs', 120,
'The frequency, in seconds, with which evaluation is run.')
flags.DEFINE_integer(
'num_examples', -1,
'If positive - maximum number of example to use for evaluation.')
flags.DEFINE_bool('eval_once', False,
'If true then evaluate model only once.')
flags.DEFINE_string('trainable_scopes', None,
'If set then it defines list of variable scopes for '
'trainable variables.')
def main(_):
if not FLAGS.train_dir and not FLAGS.checkpoint_path:
print('Either --train_dir or --checkpoint_path flags has to be provided.')
if FLAGS.train_dir and FLAGS.checkpoint_path:
print('Only one of --train_dir or --checkpoint_path should be provided.')
params = model_lib.default_hparams()
params.parse(FLAGS.hparams)
tf.logging.info('User provided hparams: %s', FLAGS.hparams)
tf.logging.info('All hyper parameters: %s', params)
batch_size = params.eval_batch_size
graph = tf.Graph()
with graph.as_default():
# dataset
dataset, num_examples, num_classes, bounds = dataset_factory.get_dataset(
FLAGS.dataset,
FLAGS.split_name,
batch_size,
FLAGS.dataset_image_size,
is_training=False)
dataset_iterator = dataset.make_one_shot_iterator()
images, labels = dataset_iterator.get_next()
if FLAGS.num_examples > 0:
num_examples = min(num_examples, FLAGS.num_examples)
# setup model
global_step = tf.train.get_or_create_global_step()
model_fn_two_args = model_lib.get_model(FLAGS.model_name, num_classes)
model_fn = lambda x: model_fn_two_args(x, is_training=False)
if not FLAGS.adv_method or FLAGS.adv_method == 'clean':
logits = model_fn(images)
else:
adv_examples = adversarial_attack.generate_adversarial_examples(
images, bounds, model_fn, FLAGS.adv_method)
logits = model_fn(adv_examples)
# update trainable variables if fine tuning is used
model_lib.filter_trainable_variables(FLAGS.trainable_scopes)
# Setup the moving averages
if FLAGS.moving_average_decay and (FLAGS.moving_average_decay > 0):
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
variables_to_restore = variable_averages.variables_to_restore(
tf.contrib.framework.get_model_variables())
variables_to_restore[global_step.op.name] = global_step
else:
variables_to_restore = tf.contrib.framework.get_variables_to_restore()
# Setup evaluation metric
with tf.name_scope('Eval'):
names_to_values, names_to_updates = (
tf.contrib.metrics.aggregate_metric_map({
'Accuracy': tf.metrics.accuracy(labels, tf.argmax(logits, 1)),
'Top5': tf.metrics.recall_at_k(tf.to_int64(labels), logits, 5)
}))
for name, value in names_to_values.iteritems():
tf.summary.scalar(name, value)
# Run evaluation
num_batches = int(num_examples / batch_size)
if FLAGS.train_dir:
output_dir = os.path.join(FLAGS.train_dir, FLAGS.eval_name)
if not tf.gfile.Exists(output_dir):
tf.gfile.MakeDirs(output_dir)
tf.contrib.training.evaluate_repeatedly(
FLAGS.train_dir,
master=FLAGS.master,
scaffold=tf.train.Scaffold(
saver=tf.train.Saver(variables_to_restore)),
eval_ops=names_to_updates.values(),
eval_interval_secs=FLAGS.eval_interval_secs,
hooks=[
tf.contrib.training.StopAfterNEvalsHook(num_batches),
tf.contrib.training.SummaryAtEndHook(output_dir),
tf.train.LoggingTensorHook(names_to_values, at_end=True),
],
max_number_of_evaluations=1 if FLAGS.eval_once else None)
else:
result = tf.contrib.training.evaluate_once(
FLAGS.checkpoint_path,
master=FLAGS.master,
scaffold=tf.train.Scaffold(
saver=tf.train.Saver(variables_to_restore)),
eval_ops=names_to_updates.values(),
final_ops=names_to_values,
hooks=[
tf.contrib.training.StopAfterNEvalsHook(num_batches),
tf.train.LoggingTensorHook(names_to_values, at_end=True),
])
if FLAGS.output_file:
with tf.gfile.Open(FLAGS.output_file, 'a') as f:
f.write('%s,%.3f,%.3f\n'
% (FLAGS.eval_name, result['Accuracy'], result['Top5']))
if __name__ == '__main__':
app.run(main)
|