Spaces:
Running
Running
File size: 7,160 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for graphs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
import operator
import os
import random
import shutil
import string
import tempfile
# Dependency imports
import tensorflow as tf
import graphs
from data import data_utils
flags = tf.app.flags
FLAGS = flags.FLAGS
data = data_utils
flags.DEFINE_integer('task', 0, 'Task id; needed for SyncReplicas test')
def _build_random_vocabulary(vocab_size=100):
"""Builds and returns a dict<term, id>."""
vocab = set()
while len(vocab) < (vocab_size - 1):
rand_word = ''.join(
random.choice(string.ascii_lowercase)
for _ in range(random.randint(1, 10)))
vocab.add(rand_word)
vocab_ids = dict([(word, i) for i, word in enumerate(vocab)])
vocab_ids[data.EOS_TOKEN] = vocab_size - 1
return vocab_ids
def _build_random_sequence(vocab_ids):
seq_len = random.randint(10, 200)
ids = vocab_ids.values()
seq = data.SequenceWrapper()
for token_id in [random.choice(ids) for _ in range(seq_len)]:
seq.add_timestep().set_token(token_id)
return seq
def _build_vocab_frequencies(seqs, vocab_ids):
vocab_freqs = defaultdict(int)
ids_to_words = dict([(i, word) for word, i in vocab_ids.iteritems()])
for seq in seqs:
for timestep in seq:
vocab_freqs[ids_to_words[timestep.token]] += 1
vocab_freqs[data.EOS_TOKEN] = 0
return vocab_freqs
class GraphsTest(tf.test.TestCase):
"""Test graph construction methods."""
@classmethod
def setUpClass(cls):
# Make model small
FLAGS.batch_size = 2
FLAGS.num_timesteps = 3
FLAGS.embedding_dims = 4
FLAGS.rnn_num_layers = 2
FLAGS.rnn_cell_size = 4
FLAGS.cl_num_layers = 2
FLAGS.cl_hidden_size = 4
FLAGS.vocab_size = 10
# Set input/output flags
FLAGS.data_dir = tempfile.mkdtemp()
# Build and write sequence files.
vocab_ids = _build_random_vocabulary(FLAGS.vocab_size)
seqs = [_build_random_sequence(vocab_ids) for _ in range(5)]
seqs_label = [
data.build_labeled_sequence(seq, random.choice([True, False]))
for seq in seqs
]
seqs_lm = [data.build_lm_sequence(seq) for seq in seqs]
seqs_ae = [data.build_seq_ae_sequence(seq) for seq in seqs]
seqs_rev = [data.build_reverse_sequence(seq) for seq in seqs]
seqs_bidir = [
data.build_bidirectional_seq(seq, rev)
for seq, rev in zip(seqs, seqs_rev)
]
seqs_bidir_label = [
data.build_labeled_sequence(bd_seq, random.choice([True, False]))
for bd_seq in seqs_bidir
]
filenames = [
data.TRAIN_CLASS, data.TRAIN_LM, data.TRAIN_SA, data.TEST_CLASS,
data.TRAIN_REV_LM, data.TRAIN_BD_CLASS, data.TEST_BD_CLASS
]
seq_lists = [
seqs_label, seqs_lm, seqs_ae, seqs_label, seqs_rev, seqs_bidir,
seqs_bidir_label
]
for fname, seq_list in zip(filenames, seq_lists):
with tf.python_io.TFRecordWriter(
os.path.join(FLAGS.data_dir, fname)) as writer:
for seq in seq_list:
writer.write(seq.seq.SerializeToString())
# Write vocab.txt and vocab_freq.txt
vocab_freqs = _build_vocab_frequencies(seqs, vocab_ids)
ordered_vocab_freqs = sorted(
vocab_freqs.items(), key=operator.itemgetter(1), reverse=True)
with open(os.path.join(FLAGS.data_dir, 'vocab.txt'), 'w') as vocab_f:
with open(os.path.join(FLAGS.data_dir, 'vocab_freq.txt'), 'w') as freq_f:
for word, freq in ordered_vocab_freqs:
vocab_f.write('{}\n'.format(word))
freq_f.write('{}\n'.format(freq))
@classmethod
def tearDownClass(cls):
shutil.rmtree(FLAGS.data_dir)
def setUp(self):
# Reset FLAGS
FLAGS.rnn_num_layers = 1
FLAGS.sync_replicas = False
FLAGS.adv_training_method = None
FLAGS.num_candidate_samples = -1
FLAGS.num_classes = 2
FLAGS.use_seq2seq_autoencoder = False
# Reset Graph
tf.reset_default_graph()
def testClassifierGraph(self):
FLAGS.rnn_num_layers = 2
model = graphs.VatxtModel()
train_op, _, _ = model.classifier_training()
# Pretrained vars: embedding + LSTM layers
self.assertEqual(
len(model.pretrained_variables), 1 + 2 * FLAGS.rnn_num_layers)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess)
sess.run(train_op)
def testLanguageModelGraph(self):
train_op, _, _ = graphs.VatxtModel().language_model_training()
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess)
sess.run(train_op)
def testMulticlass(self):
FLAGS.num_classes = 10
graphs.VatxtModel().classifier_graph()
def testATMethods(self):
at_methods = [None, 'rp', 'at', 'vat', 'atvat']
for method in at_methods:
FLAGS.adv_training_method = method
with tf.Graph().as_default():
graphs.VatxtModel().classifier_graph()
# Ensure variables have been reused
# Embedding + LSTM layers + hidden layers + logits layer
expected_num_vars = 1 + 2 * FLAGS.rnn_num_layers + 2 * (
FLAGS.cl_num_layers) + 2
self.assertEqual(len(tf.trainable_variables()), expected_num_vars)
def testSyncReplicas(self):
FLAGS.sync_replicas = True
graphs.VatxtModel().language_model_training()
def testCandidateSampling(self):
FLAGS.num_candidate_samples = 10
graphs.VatxtModel().language_model_training()
def testSeqAE(self):
FLAGS.use_seq2seq_autoencoder = True
graphs.VatxtModel().language_model_training()
def testBidirLM(self):
graphs.VatxtBidirModel().language_model_graph()
def testBidirClassifier(self):
at_methods = [None, 'rp', 'at', 'vat', 'atvat']
for method in at_methods:
FLAGS.adv_training_method = method
with tf.Graph().as_default():
graphs.VatxtBidirModel().classifier_graph()
# Ensure variables have been reused
# Embedding + 2 LSTM layers + hidden layers + logits layer
expected_num_vars = 1 + 2 * 2 * FLAGS.rnn_num_layers + 2 * (
FLAGS.cl_num_layers) + 2
self.assertEqual(len(tf.trainable_variables()), expected_num_vars)
def testEvalGraph(self):
_, _ = graphs.VatxtModel().eval_graph()
def testBidirEvalGraph(self):
_, _ = graphs.VatxtBidirModel().eval_graph()
if __name__ == '__main__':
tf.test.main()
|