Spaces:
Running
Running
File size: 3,141 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
#!/bin/bash
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# This script is used to run local training on DAVIS 2017. Users could also
# modify from this script for their use case. See eval.sh for an example of
# local inference with a pre-trained model.
#
# Note that this script runs local training with a single GPU and a smaller crop
# and batch size, while in the paper, we trained our models with 16 GPUS with
# --num_clones=2, --train_batch_size=6, --num_replicas=8,
# --training_number_of_steps=200000, --train_crop_size=465,
# --train_crop_size=465.
#
# Usage:
# # From the tensorflow/models/research/feelvos directory.
# sh ./train.sh
#
#
# Exit immediately if a command exits with a non-zero status.
set -e
# Move one-level up to tensorflow/models/research directory.
cd ..
# Update PYTHONPATH.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim:`pwd`/feelvos
# Set up the working environment.
CURRENT_DIR=$(pwd)
WORK_DIR="${CURRENT_DIR}/feelvos"
# Set up the working directories.
DATASET_DIR="datasets"
DAVIS_FOLDER="davis17"
DAVIS_DATASET="${WORK_DIR}/${DATASET_DIR}/${DAVIS_FOLDER}/tfrecord"
EXP_FOLDER="exp/train"
TRAIN_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${DAVIS_FOLDER}/${EXP_FOLDER}/train"
mkdir -p ${TRAIN_LOGDIR}
# Go to datasets folder and download and convert the DAVIS 2017 dataset.
DATASET_DIR="datasets"
cd "${WORK_DIR}/${DATASET_DIR}"
sh download_and_convert_davis17.sh
# Go to models folder and download and unpack the COCO pre-trained model.
MODELS_DIR="models"
mkdir -p "${WORK_DIR}/${MODELS_DIR}"
cd "${WORK_DIR}/${MODELS_DIR}"
if [ ! -d "xception_65_coco_pretrained" ]; then
wget http://download.tensorflow.org/models/xception_65_coco_pretrained_2018_10_02.tar.gz
tar -xvf xception_65_coco_pretrained_2018_10_02.tar.gz
rm xception_65_coco_pretrained_2018_10_02.tar.gz
fi
INIT_CKPT="${WORK_DIR}/${MODELS_DIR}/xception_65_coco_pretrained/x65-b2u1s2p-d48-2-3x256-sc-cr300k_init.ckpt"
# Go back to orignal directory.
cd "${CURRENT_DIR}"
python "${WORK_DIR}"/train.py \
--dataset=davis_2017 \
--dataset_dir="${DAVIS_DATASET}" \
--train_logdir="${TRAIN_LOGDIR}" \
--tf_initial_checkpoint="${INIT_CKPT}" \
--logtostderr \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--decoder_output_stride=4 \
--model_variant=xception_65 \
--multi_grid=1 \
--multi_grid=1 \
--multi_grid=1 \
--output_stride=16 \
--weight_decay=0.00004 \
--num_clones=1 \
--train_batch_size=1 \
--train_crop_size=300 \
--train_crop_size=300
|