File size: 46,115 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Utilities for the instance embedding for segmentation."""

import numpy as np
import tensorflow as tf
from deeplab import model
from deeplab.core import preprocess_utils
from feelvos.utils import mask_damaging

slim = tf.contrib.slim
resolve_shape = preprocess_utils.resolve_shape
WRONG_LABEL_PADDING_DISTANCE = 1e20

# With correlation_cost local matching will be much faster. But we provide a
# slow fallback for convenience.
USE_CORRELATION_COST = False
if USE_CORRELATION_COST:
  # pylint: disable=g-import-not-at-top
  from correlation_cost.python.ops import correlation_cost_op


def pairwise_distances(x, y):
  """Computes pairwise squared l2 distances between tensors x and y.

  Args:
    x: Tensor of shape [n, feature_dim].
    y: Tensor of shape [m, feature_dim].

  Returns:
    Float32 distances tensor of shape [n, m].
  """
  # d[i,j] = (x[i] - y[j]) * (x[i] - y[j])'
  # = sum(x[i]^2, 1) + sum(y[j]^2, 1) - 2 * x[i] * y[j]'
  xs = tf.reduce_sum(x * x, axis=1)[:, tf.newaxis]
  ys = tf.reduce_sum(y * y, axis=1)[tf.newaxis, :]
  d = xs + ys - 2 * tf.matmul(x, y, transpose_b=True)
  return d


def pairwise_distances2(x, y):
  """Computes pairwise squared l2 distances between tensors x and y.

  Naive implementation, high memory use. Could be useful to test the more
  efficient implementation.

  Args:
    x: Tensor of shape [n, feature_dim].
    y: Tensor of shape [m, feature_dim].

  Returns:
    distances of shape [n, m].
  """
  return tf.reduce_sum(tf.squared_difference(
      x[:, tf.newaxis], y[tf.newaxis, :]), axis=-1)


def cross_correlate(x, y, max_distance=9):
  """Efficiently computes the cross correlation of x and y.

  Optimized implementation using correlation_cost.
  Note that we do not normalize by the feature dimension.

  Args:
    x: Float32 tensor of shape [height, width, feature_dim].
    y: Float32 tensor of shape [height, width, feature_dim].
    max_distance: Integer, the maximum distance in pixel coordinates
      per dimension which is considered to be in the search window.

  Returns:
    Float32 tensor of shape [height, width, (2 * max_distance + 1) ** 2].
  """
  with tf.name_scope('cross_correlation'):
    corr = correlation_cost_op.correlation_cost(
        x[tf.newaxis], y[tf.newaxis], kernel_size=1,
        max_displacement=max_distance, stride_1=1, stride_2=1,
        pad=max_distance)
    corr = tf.squeeze(corr, axis=0)
    # This correlation implementation takes the mean over the feature_dim,
    # but we want sum here, so multiply by feature_dim.
    feature_dim = resolve_shape(x)[-1]
    corr *= feature_dim
    return corr


def local_pairwise_distances(x, y, max_distance=9):
  """Computes pairwise squared l2 distances using a local search window.

  Optimized implementation using correlation_cost.

  Args:
    x: Float32 tensor of shape [height, width, feature_dim].
    y: Float32 tensor of shape [height, width, feature_dim].
    max_distance: Integer, the maximum distance in pixel coordinates
      per dimension which is considered to be in the search window.

  Returns:
    Float32 distances tensor of shape
      [height, width, (2 * max_distance + 1) ** 2].
  """
  with tf.name_scope('local_pairwise_distances'):
    # d[i,j] = (x[i] - y[j]) * (x[i] - y[j])'
    # = sum(x[i]^2, -1) + sum(y[j]^2, -1) - 2 * x[i] * y[j]'
    corr = cross_correlate(x, y, max_distance=max_distance)
    xs = tf.reduce_sum(x * x, axis=2)[..., tf.newaxis]
    ys = tf.reduce_sum(y * y, axis=2)[..., tf.newaxis]
    ones_ys = tf.ones_like(ys)
    ys = cross_correlate(ones_ys, ys, max_distance=max_distance)
    d = xs + ys - 2 * corr
    # Boundary should be set to Inf.
    boundary = tf.equal(
        cross_correlate(ones_ys, ones_ys, max_distance=max_distance), 0)
    d = tf.where(boundary, tf.fill(tf.shape(d), tf.constant(np.float('inf'))),
                 d)
    return d


def local_pairwise_distances2(x, y, max_distance=9):
  """Computes pairwise squared l2 distances using a local search window.

  Naive implementation using map_fn.
  Used as a slow fallback for when correlation_cost is not available.

  Args:
    x: Float32 tensor of shape [height, width, feature_dim].
    y: Float32 tensor of shape [height, width, feature_dim].
    max_distance: Integer, the maximum distance in pixel coordinates
      per dimension which is considered to be in the search window.

  Returns:
    Float32 distances tensor of shape
      [height, width, (2 * max_distance + 1) ** 2].
  """
  with tf.name_scope('local_pairwise_distances2'):
    padding_val = 1e20
    padded_y = tf.pad(y, [[max_distance, max_distance],
                          [max_distance, max_distance], [0, 0]],
                      constant_values=padding_val)
    height, width, _ = resolve_shape(x)
    dists = []
    for y_start in range(2 * max_distance + 1):
      y_end = y_start + height
      y_slice = padded_y[y_start:y_end]
      for x_start in range(2 * max_distance + 1):
        x_end = x_start + width
        offset_y = y_slice[:, x_start:x_end]
        dist = tf.reduce_sum(tf.squared_difference(x, offset_y), axis=2)
        dists.append(dist)
    dists = tf.stack(dists, axis=2)
    return dists


def majority_vote(labels):
  """Performs a label majority vote along axis 1.

  Second try, hopefully this time more efficient.
  We assume that the labels are contiguous starting from 0.
  It will also work for non-contiguous labels, but be inefficient.

  Args:
    labels: Int tensor of shape [n, k]

  Returns:
    The majority of labels along axis 1
  """
  max_label = tf.reduce_max(labels)
  one_hot = tf.one_hot(labels, depth=max_label + 1)
  summed = tf.reduce_sum(one_hot, axis=1)
  majority = tf.argmax(summed, axis=1)
  return majority


def assign_labels_by_nearest_neighbors(reference_embeddings, query_embeddings,
                                       reference_labels, k=1):
  """Segments by nearest neighbor query wrt the reference frame.

  Args:
    reference_embeddings: Tensor of shape [height, width, embedding_dim],
      the embedding vectors for the reference frame
    query_embeddings: Tensor of shape [n_query_images, height, width,
      embedding_dim], the embedding vectors for the query frames
    reference_labels: Tensor of shape [height, width, 1], the class labels of
      the reference frame
    k: Integer, the number of nearest neighbors to use

  Returns:
    The labels of the nearest neighbors as [n_query_frames, height, width, 1]
    tensor

  Raises:
    ValueError: If k < 1.
  """
  if k < 1:
    raise ValueError('k must be at least 1')
  dists = flattened_pairwise_distances(reference_embeddings, query_embeddings)
  if k == 1:
    nn_indices = tf.argmin(dists, axis=1)[..., tf.newaxis]
  else:
    _, nn_indices = tf.nn.top_k(-dists, k, sorted=False)
  reference_labels = tf.reshape(reference_labels, [-1])
  nn_labels = tf.gather(reference_labels, nn_indices)
  if k == 1:
    nn_labels = tf.squeeze(nn_labels, axis=1)
  else:
    nn_labels = majority_vote(nn_labels)
  height = tf.shape(reference_embeddings)[0]
  width = tf.shape(reference_embeddings)[1]
  n_query_frames = query_embeddings.shape[0]
  nn_labels = tf.reshape(nn_labels, [n_query_frames, height, width, 1])
  return nn_labels


def flattened_pairwise_distances(reference_embeddings, query_embeddings):
  """Calculates flattened tensor of pairwise distances between ref and query.

  Args:
    reference_embeddings: Tensor of shape [..., embedding_dim],
      the embedding vectors for the reference frame
    query_embeddings: Tensor of shape [n_query_images, height, width,
      embedding_dim], the embedding vectors for the query frames.

  Returns:
    A distance tensor of shape [reference_embeddings.size / embedding_dim,
    query_embeddings.size / embedding_dim]
  """
  embedding_dim = resolve_shape(query_embeddings)[-1]
  reference_embeddings = tf.reshape(reference_embeddings, [-1, embedding_dim])
  first_dim = -1
  query_embeddings = tf.reshape(query_embeddings, [first_dim, embedding_dim])
  dists = pairwise_distances(query_embeddings, reference_embeddings)
  return dists


def nearest_neighbor_features_per_object(
    reference_embeddings, query_embeddings, reference_labels,
    max_neighbors_per_object, k_nearest_neighbors, gt_ids=None, n_chunks=100):
  """Calculates the distance to the nearest neighbor per object.

  For every pixel of query_embeddings calculate the distance to the
  nearest neighbor in the (possibly subsampled) reference_embeddings per object.

  Args:
    reference_embeddings: Tensor of shape [height, width, embedding_dim],
      the embedding vectors for the reference frame.
    query_embeddings: Tensor of shape [n_query_images, height, width,
      embedding_dim], the embedding vectors for the query frames.
    reference_labels: Tensor of shape [height, width, 1], the class labels of
      the reference frame.
    max_neighbors_per_object: Integer, the maximum number of candidates
      for the nearest neighbor query per object after subsampling,
      or 0 for no subsampling.
    k_nearest_neighbors: Integer, the number of nearest neighbors to use.
    gt_ids: Int tensor of shape [n_objs] of the sorted unique ground truth
      ids in the first frame. If None, it will be derived from
      reference_labels.
    n_chunks: Integer, the number of chunks to use to save memory
      (set to 1 for no chunking).

  Returns:
    nn_features: A float32 tensor of nearest neighbor features of shape
      [n_query_images, height, width, n_objects, feature_dim].
    gt_ids: An int32 tensor of the unique sorted object ids present
      in the reference labels.
  """
  with tf.name_scope('nn_features_per_object'):
    reference_labels_flat = tf.reshape(reference_labels, [-1])
    if gt_ids is None:
      ref_obj_ids, _ = tf.unique(reference_labels_flat)
      ref_obj_ids = tf.contrib.framework.sort(ref_obj_ids)
      gt_ids = ref_obj_ids
    embedding_dim = resolve_shape(reference_embeddings)[-1]
    reference_embeddings_flat = tf.reshape(reference_embeddings,
                                           [-1, embedding_dim])

    reference_embeddings_flat, reference_labels_flat = (
        subsample_reference_embeddings_and_labels(reference_embeddings_flat,
                                                  reference_labels_flat,
                                                  gt_ids,
                                                  max_neighbors_per_object))
    shape = resolve_shape(query_embeddings)
    query_embeddings_flat = tf.reshape(query_embeddings, [-1, embedding_dim])
    nn_features = _nearest_neighbor_features_per_object_in_chunks(
        reference_embeddings_flat, query_embeddings_flat, reference_labels_flat,
        gt_ids, k_nearest_neighbors, n_chunks)
    nn_features_dim = resolve_shape(nn_features)[-1]
    nn_features_reshaped = tf.reshape(nn_features,
                                      tf.stack(shape[:3] + [tf.size(gt_ids),
                                                            nn_features_dim]))
    return nn_features_reshaped, gt_ids


def _nearest_neighbor_features_per_object_in_chunks(
    reference_embeddings_flat, query_embeddings_flat, reference_labels_flat,
    ref_obj_ids, k_nearest_neighbors, n_chunks):
  """Calculates the nearest neighbor features per object in chunks to save mem.

  Uses chunking to bound the memory use.

  Args:
    reference_embeddings_flat: Tensor of shape [n, embedding_dim],
      the embedding vectors for the reference frame.
    query_embeddings_flat: Tensor of shape [m, embedding_dim], the embedding
      vectors for the query frames.
    reference_labels_flat: Tensor of shape [n], the class labels of the
      reference frame.
    ref_obj_ids: int tensor of unique object ids in the reference labels.
    k_nearest_neighbors: Integer, the number of nearest neighbors to use.
    n_chunks: Integer, the number of chunks to use to save memory
      (set to 1 for no chunking).

  Returns:
    nn_features: A float32 tensor of nearest neighbor features of shape
      [m, n_objects, feature_dim].
  """
  chunk_size = tf.cast(tf.ceil(tf.cast(tf.shape(query_embeddings_flat)[0],
                                       tf.float32) / n_chunks), tf.int32)
  wrong_label_mask = tf.not_equal(reference_labels_flat,
                                  ref_obj_ids[:, tf.newaxis])
  all_features = []
  for n in range(n_chunks):
    if n_chunks == 1:
      query_embeddings_flat_chunk = query_embeddings_flat
    else:
      chunk_start = n * chunk_size
      chunk_end = (n + 1) * chunk_size
      query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end]
    # Use control dependencies to make sure that the chunks are not processed
    # in parallel which would prevent any peak memory savings.
    with tf.control_dependencies(all_features):
      features = _nn_features_per_object_for_chunk(
          reference_embeddings_flat, query_embeddings_flat_chunk,
          wrong_label_mask, k_nearest_neighbors
      )
    all_features.append(features)
  if n_chunks == 1:
    nn_features = all_features[0]
  else:
    nn_features = tf.concat(all_features, axis=0)
  return nn_features


def _nn_features_per_object_for_chunk(
    reference_embeddings, query_embeddings, wrong_label_mask,
    k_nearest_neighbors):
  """Extracts features for each object using nearest neighbor attention.

  Args:
    reference_embeddings: Tensor of shape [n_chunk, embedding_dim],
      the embedding vectors for the reference frame.
    query_embeddings: Tensor of shape [m_chunk, embedding_dim], the embedding
      vectors for the query frames.
    wrong_label_mask:
    k_nearest_neighbors: Integer, the number of nearest neighbors to use.

  Returns:
    nn_features: A float32 tensor of nearest neighbor features of shape
      [m_chunk, n_objects, feature_dim].
  """
  reference_embeddings_key = reference_embeddings
  query_embeddings_key = query_embeddings
  dists = flattened_pairwise_distances(reference_embeddings_key,
                                       query_embeddings_key)
  dists = (dists[:, tf.newaxis, :] +
           tf.cast(wrong_label_mask[tf.newaxis, :, :], tf.float32) *
           WRONG_LABEL_PADDING_DISTANCE)
  if k_nearest_neighbors == 1:
    features = tf.reduce_min(dists, axis=2, keepdims=True)
  else:
    # Find the closest k and combine them according to attention_feature_type
    dists, _ = tf.nn.top_k(-dists, k=k_nearest_neighbors)
    dists = -dists
    # If not enough real neighbors were found, pad with the farthest real
    # neighbor.
    valid_mask = tf.less(dists, WRONG_LABEL_PADDING_DISTANCE)
    masked_dists = dists * tf.cast(valid_mask, tf.float32)
    pad_dist = tf.tile(tf.reduce_max(masked_dists, axis=2)[..., tf.newaxis],
                       multiples=[1, 1, k_nearest_neighbors])
    dists = tf.where(valid_mask, dists, pad_dist)
    # take mean of distances
    features = tf.reduce_mean(dists, axis=2, keepdims=True)
  return features


def create_embedding_segmentation_features(features, feature_dimension,
                                           n_layers, kernel_size, reuse,
                                           atrous_rates=None):
  """Extracts features which can be used to estimate the final segmentation.

  Args:
    features: input features of shape [batch, height, width, features]
    feature_dimension: Integer, the dimensionality used in the segmentation
      head layers.
    n_layers: Integer, the number of layers in the segmentation head.
    kernel_size: Integer, the kernel size used in the segmentation head.
    reuse: reuse mode for the variable_scope.
    atrous_rates: List of integers of length n_layers, the atrous rates to use.

  Returns:
    Features to be used to estimate the segmentation labels of shape
      [batch, height, width, embedding_seg_feat_dim].
  """
  if atrous_rates is None or not atrous_rates:
    atrous_rates = [1 for _ in range(n_layers)]
  assert len(atrous_rates) == n_layers
  with tf.variable_scope('embedding_seg', reuse=reuse):
    for n in range(n_layers):
      features = model.split_separable_conv2d(
          features, feature_dimension, kernel_size=kernel_size,
          rate=atrous_rates[n], scope='split_separable_conv2d_{}'.format(n))
    return features


def add_image_summaries(images, nn_features, logits, batch_size,
                        prev_frame_nn_features=None):
  """Adds image summaries of input images, attention features and logits.

  Args:
    images: Image tensor of shape [batch, height, width, channels].
    nn_features: Nearest neighbor attention features of shape
      [batch_size, height, width, n_objects, 1].
    logits: Float32 tensor of logits.
    batch_size: Integer, the number of videos per clone per mini-batch.
    prev_frame_nn_features: Nearest neighbor attention features wrt. the
      last frame of shape [batch_size, height, width, n_objects, 1].
      Can be None.
  """
  # Separate reference and query images.
  reshaped_images = tf.reshape(images, tf.stack(
      [batch_size, -1] + resolve_shape(images)[1:]))
  reference_images = reshaped_images[:, 0]
  query_images = reshaped_images[:, 1:]
  query_images_reshaped = tf.reshape(query_images, tf.stack(
      [-1] + resolve_shape(images)[1:]))
  tf.summary.image('ref_images', reference_images, max_outputs=batch_size)
  tf.summary.image('query_images', query_images_reshaped, max_outputs=10)
  predictions = tf.cast(
      tf.argmax(logits, axis=-1), tf.uint8)[..., tf.newaxis]
  # Scale up so that we can actually see something.
  tf.summary.image('predictions', predictions * 32, max_outputs=10)
  # We currently only show the first dimension of the features for background
  # and the first foreground object.
  tf.summary.image('nn_fg_features', nn_features[..., 0:1, 0],
                   max_outputs=batch_size)
  if prev_frame_nn_features is not None:
    tf.summary.image('nn_fg_features_prev', prev_frame_nn_features[..., 0:1, 0],
                     max_outputs=batch_size)
  tf.summary.image('nn_bg_features', nn_features[..., 1:2, 0],
                   max_outputs=batch_size)
  if prev_frame_nn_features is not None:
    tf.summary.image('nn_bg_features_prev',
                     prev_frame_nn_features[..., 1:2, 0],
                     max_outputs=batch_size)


def get_embeddings(images, model_options, embedding_dimension):
  """Extracts embedding vectors for images. Should only be used for inference.

  Args:
    images: A tensor of shape [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    embedding_dimension: Integer, the dimension of the embedding.

  Returns:
    embeddings: A tensor of shape [batch, height, width, embedding_dimension].
  """
  features, end_points = model.extract_features(
      images,
      model_options,
      is_training=False)

  if model_options.decoder_output_stride is not None:
    decoder_output_stride = min(model_options.decoder_output_stride)
    if model_options.crop_size is None:
      height = tf.shape(images)[1]
      width = tf.shape(images)[2]
    else:
      height, width = model_options.crop_size
    features = model.refine_by_decoder(
        features,
        end_points,
        crop_size=[height, width],
        decoder_output_stride=[decoder_output_stride],
        decoder_use_separable_conv=model_options.decoder_use_separable_conv,
        model_variant=model_options.model_variant,
        is_training=False)

  with tf.variable_scope('embedding'):
    embeddings = split_separable_conv2d_with_identity_initializer(
        features, embedding_dimension, scope='split_separable_conv2d')
  return embeddings


def get_logits_with_matching(images,
                             model_options,
                             weight_decay=0.0001,
                             reuse=None,
                             is_training=False,
                             fine_tune_batch_norm=False,
                             reference_labels=None,
                             batch_size=None,
                             num_frames_per_video=None,
                             embedding_dimension=None,
                             max_neighbors_per_object=0,
                             k_nearest_neighbors=1,
                             use_softmax_feedback=True,
                             initial_softmax_feedback=None,
                             embedding_seg_feature_dimension=256,
                             embedding_seg_n_layers=4,
                             embedding_seg_kernel_size=7,
                             embedding_seg_atrous_rates=None,
                             normalize_nearest_neighbor_distances=True,
                             also_attend_to_previous_frame=True,
                             damage_initial_previous_frame_mask=False,
                             use_local_previous_frame_attention=True,
                             previous_frame_attention_window_size=15,
                             use_first_frame_matching=True,
                             also_return_embeddings=False,
                             ref_embeddings=None):
  """Gets the logits by atrous/image spatial pyramid pooling using attention.

  Args:
    images: A tensor of size [batch, height, width, channels].
    model_options: A ModelOptions instance to configure models.
    weight_decay: The weight decay for model variables.
    reuse: Reuse the model variables or not.
    is_training: Is training or not.
    fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
    reference_labels: The segmentation labels of the reference frame on which
      attention is applied.
    batch_size: Integer, the number of videos on a batch
    num_frames_per_video: Integer, the number of frames per video
    embedding_dimension: Integer, the dimension of the embedding
    max_neighbors_per_object: Integer, the maximum number of candidates
      for the nearest neighbor query per object after subsampling.
      Can be 0 for no subsampling.
    k_nearest_neighbors: Integer, the number of nearest neighbors to use.
    use_softmax_feedback: Boolean, whether to give the softmax predictions of
      the last frame as additional input to the segmentation head.
    initial_softmax_feedback: List of Float32 tensors, or None. Can be used to
      initialize the softmax predictions used for the feedback loop.
      Only has an effect if use_softmax_feedback is True.
    embedding_seg_feature_dimension: Integer, the dimensionality used in the
      segmentation head layers.
    embedding_seg_n_layers: Integer, the number of layers in the segmentation
      head.
    embedding_seg_kernel_size: Integer, the kernel size used in the
      segmentation head.
    embedding_seg_atrous_rates: List of integers of length
      embedding_seg_n_layers, the atrous rates to use for the segmentation head.
    normalize_nearest_neighbor_distances: Boolean, whether to normalize the
      nearest neighbor distances to [0,1] using sigmoid, scale and shift.
    also_attend_to_previous_frame: Boolean, whether to also use nearest
      neighbor attention with respect to the previous frame.
    damage_initial_previous_frame_mask: Boolean, whether to artificially damage
      the initial previous frame mask. Only has an effect if
      also_attend_to_previous_frame is True.
    use_local_previous_frame_attention: Boolean, whether to restrict the
      previous frame attention to a local search window.
      Only has an effect, if also_attend_to_previous_frame is True.
    previous_frame_attention_window_size: Integer, the window size used for
      local previous frame attention, if use_local_previous_frame_attention
      is True.
    use_first_frame_matching: Boolean, whether to extract features by matching
      to the reference frame. This should always be true except for ablation
      experiments.
    also_return_embeddings: Boolean, whether to return the embeddings as well.
    ref_embeddings: Tuple of
      (first_frame_embeddings, previous_frame_embeddings),
      each of shape [batch, height, width, embedding_dimension], or None.
  Returns:
    outputs_to_logits: A map from output_type to logits.
    If also_return_embeddings is True, it will also return an embeddings
      tensor of shape [batch, height, width, embedding_dimension].
  """
  features, end_points = model.extract_features(
      images,
      model_options,
      weight_decay=weight_decay,
      reuse=reuse,
      is_training=is_training,
      fine_tune_batch_norm=fine_tune_batch_norm)

  if model_options.decoder_output_stride:
    decoder_output_stride = min(model_options.decoder_output_stride)
    if model_options.crop_size is None:
      height = tf.shape(images)[1]
      width = tf.shape(images)[2]
    else:
      height, width = model_options.crop_size
    decoder_height = model.scale_dimension(height, 1.0 / decoder_output_stride)
    decoder_width = model.scale_dimension(width, 1.0 / decoder_output_stride)
    features = model.refine_by_decoder(
        features,
        end_points,
        crop_size=[height, width],
        decoder_output_stride=[decoder_output_stride],
        decoder_use_separable_conv=model_options.decoder_use_separable_conv,
        model_variant=model_options.model_variant,
        weight_decay=weight_decay,
        reuse=reuse,
        is_training=is_training,
        fine_tune_batch_norm=fine_tune_batch_norm)

  with tf.variable_scope('embedding', reuse=reuse):
    embeddings = split_separable_conv2d_with_identity_initializer(
        features, embedding_dimension, scope='split_separable_conv2d')
    embeddings = tf.identity(embeddings, name='embeddings')
  scaled_reference_labels = tf.image.resize_nearest_neighbor(
      reference_labels,
      resolve_shape(embeddings, 4)[1:3],
      align_corners=True)
  h, w = decoder_height, decoder_width
  if num_frames_per_video is None:
    num_frames_per_video = tf.size(embeddings) // (
        batch_size * h * w * embedding_dimension)
  new_labels_shape = tf.stack([batch_size, -1, h, w, 1])
  reshaped_reference_labels = tf.reshape(scaled_reference_labels,
                                         new_labels_shape)
  new_embeddings_shape = tf.stack([batch_size,
                                   num_frames_per_video, h, w,
                                   embedding_dimension])
  reshaped_embeddings = tf.reshape(embeddings, new_embeddings_shape)
  all_nn_features = []
  all_ref_obj_ids = []
  # To keep things simple, we do all this separate for each sequence for now.
  for n in range(batch_size):
    embedding = reshaped_embeddings[n]
    if ref_embeddings is None:
      n_chunks = 100
      reference_embedding = embedding[0]
      if also_attend_to_previous_frame or use_softmax_feedback:
        queries_embedding = embedding[2:]
      else:
        queries_embedding = embedding[1:]
    else:
      if USE_CORRELATION_COST:
        n_chunks = 20
      else:
        n_chunks = 500
      reference_embedding = ref_embeddings[0][n]
      queries_embedding = embedding
    reference_labels = reshaped_reference_labels[n][0]
    nn_features_n, ref_obj_ids = nearest_neighbor_features_per_object(
        reference_embedding, queries_embedding, reference_labels,
        max_neighbors_per_object, k_nearest_neighbors, n_chunks=n_chunks)
    if normalize_nearest_neighbor_distances:
      nn_features_n = (tf.nn.sigmoid(nn_features_n) - 0.5) * 2
    all_nn_features.append(nn_features_n)
    all_ref_obj_ids.append(ref_obj_ids)

  feat_dim = resolve_shape(features)[-1]
  features = tf.reshape(features, tf.stack(
      [batch_size, num_frames_per_video, h, w, feat_dim]))
  if ref_embeddings is None:
    # Strip the features for the reference frame.
    if also_attend_to_previous_frame or use_softmax_feedback:
      features = features[:, 2:]
    else:
      features = features[:, 1:]

  # To keep things simple, we do all this separate for each sequence for now.
  outputs_to_logits = {output: [] for
                       output in model_options.outputs_to_num_classes}
  for n in range(batch_size):
    features_n = features[n]
    nn_features_n = all_nn_features[n]
    nn_features_n_tr = tf.transpose(nn_features_n, [3, 0, 1, 2, 4])
    n_objs = tf.shape(nn_features_n_tr)[0]
    # Repeat features for every object.
    features_n_tiled = tf.tile(features_n[tf.newaxis],
                               multiples=[n_objs, 1, 1, 1, 1])
    prev_frame_labels = None
    if also_attend_to_previous_frame:
      prev_frame_labels = reshaped_reference_labels[n, 1]
      if is_training and damage_initial_previous_frame_mask:
        # Damage the previous frame masks.
        prev_frame_labels = mask_damaging.damage_masks(prev_frame_labels,
                                                       dilate=False)
      tf.summary.image('prev_frame_labels',
                       tf.cast(prev_frame_labels[tf.newaxis],
                               tf.uint8) * 32)
      initial_softmax_feedback_n = create_initial_softmax_from_labels(
          prev_frame_labels, reshaped_reference_labels[n][0],
          decoder_output_stride=None, reduce_labels=True)
    elif initial_softmax_feedback is not None:
      initial_softmax_feedback_n = initial_softmax_feedback[n]
    else:
      initial_softmax_feedback_n = None
    if initial_softmax_feedback_n is None:
      last_softmax = tf.zeros((n_objs, h, w, 1), dtype=tf.float32)
    else:
      last_softmax = tf.transpose(initial_softmax_feedback_n, [2, 0, 1])[
          ..., tf.newaxis]
    assert len(model_options.outputs_to_num_classes) == 1
    output = model_options.outputs_to_num_classes.keys()[0]
    logits = []
    n_ref_frames = 1
    prev_frame_nn_features_n = None
    if also_attend_to_previous_frame or use_softmax_feedback:
      n_ref_frames += 1
    if ref_embeddings is not None:
      n_ref_frames = 0
    for t in range(num_frames_per_video - n_ref_frames):
      to_concat = [features_n_tiled[:, t]]
      if use_first_frame_matching:
        to_concat.append(nn_features_n_tr[:, t])
      if use_softmax_feedback:
        to_concat.append(last_softmax)
      if also_attend_to_previous_frame:
        assert normalize_nearest_neighbor_distances, (
            'previous frame attention currently only works when normalized '
            'distances are used')
        embedding = reshaped_embeddings[n]
        if ref_embeddings is None:
          last_frame_embedding = embedding[t + 1]
          query_embeddings = embedding[t + 2, tf.newaxis]
        else:
          last_frame_embedding = ref_embeddings[1][0]
          query_embeddings = embedding
        if use_local_previous_frame_attention:
          assert query_embeddings.shape[0] == 1
          prev_frame_nn_features_n = (
              local_previous_frame_nearest_neighbor_features_per_object(
                  last_frame_embedding,
                  query_embeddings[0],
                  prev_frame_labels,
                  all_ref_obj_ids[n],
                  max_distance=previous_frame_attention_window_size)
          )
        else:
          prev_frame_nn_features_n, _ = (
              nearest_neighbor_features_per_object(
                  last_frame_embedding, query_embeddings, prev_frame_labels,
                  max_neighbors_per_object, k_nearest_neighbors,
                  gt_ids=all_ref_obj_ids[n]))
          prev_frame_nn_features_n = (tf.nn.sigmoid(
              prev_frame_nn_features_n) - 0.5) * 2
        prev_frame_nn_features_n_sq = tf.squeeze(prev_frame_nn_features_n,
                                                 axis=0)
        prev_frame_nn_features_n_tr = tf.transpose(
            prev_frame_nn_features_n_sq, [2, 0, 1, 3])
        to_concat.append(prev_frame_nn_features_n_tr)
      features_n_concat_t = tf.concat(to_concat, axis=-1)
      embedding_seg_features_n_t = (
          create_embedding_segmentation_features(
              features_n_concat_t, embedding_seg_feature_dimension,
              embedding_seg_n_layers, embedding_seg_kernel_size,
              reuse or n > 0, atrous_rates=embedding_seg_atrous_rates))
      logits_t = model.get_branch_logits(
          embedding_seg_features_n_t,
          1,
          model_options.atrous_rates,
          aspp_with_batch_norm=model_options.aspp_with_batch_norm,
          kernel_size=model_options.logits_kernel_size,
          weight_decay=weight_decay,
          reuse=reuse or n > 0 or t > 0,
          scope_suffix=output
      )
      logits.append(logits_t)
      prev_frame_labels = tf.transpose(tf.argmax(logits_t, axis=0),
                                       [2, 0, 1])
      last_softmax = tf.nn.softmax(logits_t, axis=0)
    logits = tf.stack(logits, axis=1)
    logits_shape = tf.stack(
        [n_objs, num_frames_per_video - n_ref_frames] +
        resolve_shape(logits)[2:-1])
    logits_reshaped = tf.reshape(logits, logits_shape)
    logits_transposed = tf.transpose(logits_reshaped, [1, 2, 3, 0])
    outputs_to_logits[output].append(logits_transposed)

    add_image_summaries(
        images[n * num_frames_per_video: (n+1) * num_frames_per_video],
        nn_features_n,
        logits_transposed,
        batch_size=1,
        prev_frame_nn_features=prev_frame_nn_features_n)
  if also_return_embeddings:
    return outputs_to_logits, embeddings
  else:
    return outputs_to_logits


def subsample_reference_embeddings_and_labels(
    reference_embeddings_flat, reference_labels_flat, ref_obj_ids,
    max_neighbors_per_object):
  """Subsamples the reference embedding vectors and labels.

  After subsampling, at most max_neighbors_per_object items will remain per
    class.

  Args:
    reference_embeddings_flat: Tensor of shape [n, embedding_dim],
      the embedding vectors for the reference frame.
    reference_labels_flat: Tensor of shape [n, 1],
      the class labels of the reference frame.
    ref_obj_ids: An int32 tensor of the unique object ids present
      in the reference labels.
    max_neighbors_per_object: Integer, the maximum number of candidates
      for the nearest neighbor query per object after subsampling,
      or 0 for no subsampling.

  Returns:
    reference_embeddings_flat: Tensor of shape [n_sub, embedding_dim],
      the subsampled embedding vectors for the reference frame.
    reference_labels_flat: Tensor of shape [n_sub, 1],
      the class labels of the reference frame.
  """
  if max_neighbors_per_object == 0:
    return reference_embeddings_flat, reference_labels_flat
  same_label_mask = tf.equal(reference_labels_flat[tf.newaxis, :],
                             ref_obj_ids[:, tf.newaxis])
  max_neighbors_per_object_repeated = tf.tile(
      tf.constant(max_neighbors_per_object)[tf.newaxis],
      multiples=[tf.size(ref_obj_ids)])
  # Somehow map_fn on GPU caused trouble sometimes, so let's put it on CPU
  # for now.
  with tf.device('cpu:0'):
    subsampled_indices = tf.map_fn(_create_subsampling_mask,
                                   (same_label_mask,
                                    max_neighbors_per_object_repeated),
                                   dtype=tf.int64,
                                   name='subsample_labels_map_fn',
                                   parallel_iterations=1)
  mask = tf.not_equal(subsampled_indices, tf.constant(-1, dtype=tf.int64))
  masked_indices = tf.boolean_mask(subsampled_indices, mask)
  reference_embeddings_flat = tf.gather(reference_embeddings_flat,
                                        masked_indices)
  reference_labels_flat = tf.gather(reference_labels_flat, masked_indices)
  return reference_embeddings_flat, reference_labels_flat


def _create_subsampling_mask(args):
  """Creates boolean mask which can be used to subsample the labels.

  Args:
    args: tuple of (label_mask, max_neighbors_per_object), where label_mask
      is the mask to be subsampled and max_neighbors_per_object is a int scalar,
      the maximum number of neighbors to be retained after subsampling.

  Returns:
    The boolean mask for subsampling the labels.
  """
  label_mask, max_neighbors_per_object = args
  indices = tf.squeeze(tf.where(label_mask), axis=1)
  shuffled_indices = tf.random_shuffle(indices)
  subsampled_indices = shuffled_indices[:max_neighbors_per_object]
  n_pad = max_neighbors_per_object - tf.size(subsampled_indices)
  padded_label = -1
  padding = tf.fill((n_pad,), tf.constant(padded_label, dtype=tf.int64))
  padded = tf.concat([subsampled_indices, padding], axis=0)
  return padded


def conv2d_identity_initializer(scale=1.0, mean=0, stddev=3e-2):
  """Creates an identity initializer for TensorFlow conv2d.

  We add a small amount of normal noise to the initialization matrix.
  Code copied from lcchen@.

  Args:
    scale: The scale coefficient for the identity weight matrix.
    mean: A 0-D Tensor or Python value of type `dtype`. The mean of the
      truncated normal distribution.
    stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
      of the truncated normal distribution.

  Returns:
    An identity initializer function for TensorFlow conv2d.
  """
  def _initializer(shape, dtype=tf.float32, partition_info=None):
    """Returns the identity matrix scaled by `scale`.

    Args:
      shape: A tuple of int32 numbers indicating the shape of the initializing
         matrix.
      dtype: The data type of the initializing matrix.
      partition_info: (Optional) variable_scope._PartitionInfo object holding
      additional information about how the variable is partitioned. This input
        is not used in our case, but is required by TensorFlow.

    Returns:
      A identity matrix.

    Raises:
      ValueError: If len(shape) != 4, or shape[0] != shape[1], or shape[0] is
        not odd, or shape[1] is not odd..
    """
    del partition_info
    if len(shape) != 4:
      raise ValueError('Expect shape length to be 4.')
    if shape[0] != shape[1]:
      raise ValueError('Expect shape[0] = shape[1].')
    if shape[0] % 2 != 1:
      raise ValueError('Expect shape[0] to be odd value.')
    if shape[1] % 2 != 1:
      raise ValueError('Expect shape[1] to be odd value.')
    weights = np.zeros(shape, dtype=np.float32)
    center_y = shape[0] / 2
    center_x = shape[1] / 2
    min_channel = min(shape[2], shape[3])
    for i in range(min_channel):
      weights[center_y, center_x, i, i] = scale
    return tf.constant(weights, dtype=dtype) + tf.truncated_normal(
        shape, mean=mean, stddev=stddev, dtype=dtype)

  return _initializer


def split_separable_conv2d_with_identity_initializer(
    inputs,
    filters,
    kernel_size=3,
    rate=1,
    weight_decay=0.00004,
    scope=None):
  """Splits a separable conv2d into depthwise and pointwise conv2d.

  This operation differs from `tf.layers.separable_conv2d` as this operation
  applies activation function between depthwise and pointwise conv2d.

  Args:
    inputs: Input tensor with shape [batch, height, width, channels].
    filters: Number of filters in the 1x1 pointwise convolution.
    kernel_size: A list of length 2: [kernel_height, kernel_width] of
      of the filters. Can be an int if both values are the same.
    rate: Atrous convolution rate for the depthwise convolution.
    weight_decay: The weight decay to use for regularizing the model.
    scope: Optional scope for the operation.

  Returns:
    Computed features after split separable conv2d.
  """
  initializer = conv2d_identity_initializer()
  outputs = slim.separable_conv2d(
      inputs,
      None,
      kernel_size=kernel_size,
      depth_multiplier=1,
      rate=rate,
      weights_initializer=initializer,
      weights_regularizer=None,
      scope=scope + '_depthwise')
  return slim.conv2d(
      outputs,
      filters,
      1,
      weights_initializer=initializer,
      weights_regularizer=slim.l2_regularizer(weight_decay),
      scope=scope + '_pointwise')


def create_initial_softmax_from_labels(last_frame_labels, reference_labels,
                                       decoder_output_stride, reduce_labels):
  """Creates initial softmax predictions from last frame labels.

  Args:
    last_frame_labels: last frame labels of shape [1, height, width, 1].
    reference_labels: reference frame labels of shape [1, height, width, 1].
    decoder_output_stride: Integer, the stride of the decoder. Can be None, in
      this case it's assumed that the last_frame_labels and reference_labels
      are already scaled to the decoder output resolution.
    reduce_labels: Boolean, whether to reduce the depth of the softmax one_hot
      encoding to the actual number of labels present in the reference frame
      (otherwise the depth will be the highest label index + 1).

  Returns:
    init_softmax: the initial softmax predictions.
  """
  if decoder_output_stride is None:
    labels_output_size = last_frame_labels
    reference_labels_output_size = reference_labels
  else:
    h = tf.shape(last_frame_labels)[1]
    w = tf.shape(last_frame_labels)[2]
    h_sub = model.scale_dimension(h, 1.0 / decoder_output_stride)
    w_sub = model.scale_dimension(w, 1.0 / decoder_output_stride)
    labels_output_size = tf.image.resize_nearest_neighbor(
        last_frame_labels, [h_sub, w_sub], align_corners=True)
    reference_labels_output_size = tf.image.resize_nearest_neighbor(
        reference_labels, [h_sub, w_sub], align_corners=True)
  if reduce_labels:
    unique_labels, _ = tf.unique(tf.reshape(reference_labels_output_size, [-1]))
    depth = tf.size(unique_labels)
  else:
    depth = tf.reduce_max(reference_labels_output_size) + 1
  one_hot_assertion = tf.assert_less(tf.reduce_max(labels_output_size), depth)
  with tf.control_dependencies([one_hot_assertion]):
    init_softmax = tf.one_hot(tf.squeeze(labels_output_size,
                                         axis=-1),
                              depth=depth,
                              dtype=tf.float32)
  return init_softmax


def local_previous_frame_nearest_neighbor_features_per_object(
    prev_frame_embedding, query_embedding, prev_frame_labels,
    gt_ids, max_distance=9):
  """Computes nearest neighbor features while only allowing local matches.

  Args:
    prev_frame_embedding: Tensor of shape [height, width, embedding_dim],
      the embedding vectors for the last frame.
    query_embedding: Tensor of shape [height, width, embedding_dim],
      the embedding vectors for the query frames.
    prev_frame_labels: Tensor of shape [height, width, 1], the class labels of
      the previous frame.
    gt_ids: Int Tensor of shape [n_objs] of the sorted unique ground truth
      ids in the first frame.
    max_distance: Integer, the maximum distance allowed for local matching.

  Returns:
    nn_features: A float32 np.array of nearest neighbor features of shape
      [1, height, width, n_objects, 1].
  """
  with tf.name_scope(
      'local_previous_frame_nearest_neighbor_features_per_object'):
    if USE_CORRELATION_COST:
      tf.logging.info('Using correlation_cost.')
      d = local_pairwise_distances(query_embedding, prev_frame_embedding,
                                   max_distance=max_distance)
    else:
      # Slow fallback in case correlation_cost is not available.
      tf.logging.warn('correlation cost is not available, using slow fallback '
                      'implementation.')
      d = local_pairwise_distances2(query_embedding, prev_frame_embedding,
                                    max_distance=max_distance)
    d = (tf.nn.sigmoid(d) - 0.5) * 2
    height = tf.shape(prev_frame_embedding)[0]
    width = tf.shape(prev_frame_embedding)[1]

    # Create offset versions of the mask.
    if USE_CORRELATION_COST:
      # New, faster code with cross-correlation via correlation_cost.
      # Due to padding we have to add 1 to the labels.
      offset_labels = correlation_cost_op.correlation_cost(
          tf.ones((1, height, width, 1)),
          tf.cast(prev_frame_labels + 1, tf.float32)[tf.newaxis],
          kernel_size=1,
          max_displacement=max_distance, stride_1=1, stride_2=1,
          pad=max_distance)
      offset_labels = tf.squeeze(offset_labels, axis=0)[..., tf.newaxis]
      # Subtract the 1 again and round.
      offset_labels = tf.round(offset_labels - 1)
      offset_masks = tf.equal(
          offset_labels,
          tf.cast(gt_ids, tf.float32)[tf.newaxis, tf.newaxis, tf.newaxis, :])
    else:
      # Slower code, without dependency to correlation_cost
      masks = tf.equal(prev_frame_labels, gt_ids[tf.newaxis, tf.newaxis])
      padded_masks = tf.pad(masks,
                            [[max_distance, max_distance],
                             [max_distance, max_distance],
                             [0, 0]])
      offset_masks = []
      for y_start in range(2 * max_distance + 1):
        y_end = y_start + height
        masks_slice = padded_masks[y_start:y_end]
        for x_start in range(2 * max_distance + 1):
          x_end = x_start + width
          offset_mask = masks_slice[:, x_start:x_end]
          offset_masks.append(offset_mask)
      offset_masks = tf.stack(offset_masks, axis=2)

    pad = tf.ones((height, width, (2 * max_distance + 1) ** 2, tf.size(gt_ids)))
    d_tiled = tf.tile(d[..., tf.newaxis], multiples=(1, 1, 1, tf.size(gt_ids)))
    d_masked = tf.where(offset_masks, d_tiled, pad)
    dists = tf.reduce_min(d_masked, axis=2)
    dists = tf.reshape(dists, (1, height, width, tf.size(gt_ids), 1))
    return dists