Spaces:
Running
Running
File size: 46,115 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for the instance embedding for segmentation."""
import numpy as np
import tensorflow as tf
from deeplab import model
from deeplab.core import preprocess_utils
from feelvos.utils import mask_damaging
slim = tf.contrib.slim
resolve_shape = preprocess_utils.resolve_shape
WRONG_LABEL_PADDING_DISTANCE = 1e20
# With correlation_cost local matching will be much faster. But we provide a
# slow fallback for convenience.
USE_CORRELATION_COST = False
if USE_CORRELATION_COST:
# pylint: disable=g-import-not-at-top
from correlation_cost.python.ops import correlation_cost_op
def pairwise_distances(x, y):
"""Computes pairwise squared l2 distances between tensors x and y.
Args:
x: Tensor of shape [n, feature_dim].
y: Tensor of shape [m, feature_dim].
Returns:
Float32 distances tensor of shape [n, m].
"""
# d[i,j] = (x[i] - y[j]) * (x[i] - y[j])'
# = sum(x[i]^2, 1) + sum(y[j]^2, 1) - 2 * x[i] * y[j]'
xs = tf.reduce_sum(x * x, axis=1)[:, tf.newaxis]
ys = tf.reduce_sum(y * y, axis=1)[tf.newaxis, :]
d = xs + ys - 2 * tf.matmul(x, y, transpose_b=True)
return d
def pairwise_distances2(x, y):
"""Computes pairwise squared l2 distances between tensors x and y.
Naive implementation, high memory use. Could be useful to test the more
efficient implementation.
Args:
x: Tensor of shape [n, feature_dim].
y: Tensor of shape [m, feature_dim].
Returns:
distances of shape [n, m].
"""
return tf.reduce_sum(tf.squared_difference(
x[:, tf.newaxis], y[tf.newaxis, :]), axis=-1)
def cross_correlate(x, y, max_distance=9):
"""Efficiently computes the cross correlation of x and y.
Optimized implementation using correlation_cost.
Note that we do not normalize by the feature dimension.
Args:
x: Float32 tensor of shape [height, width, feature_dim].
y: Float32 tensor of shape [height, width, feature_dim].
max_distance: Integer, the maximum distance in pixel coordinates
per dimension which is considered to be in the search window.
Returns:
Float32 tensor of shape [height, width, (2 * max_distance + 1) ** 2].
"""
with tf.name_scope('cross_correlation'):
corr = correlation_cost_op.correlation_cost(
x[tf.newaxis], y[tf.newaxis], kernel_size=1,
max_displacement=max_distance, stride_1=1, stride_2=1,
pad=max_distance)
corr = tf.squeeze(corr, axis=0)
# This correlation implementation takes the mean over the feature_dim,
# but we want sum here, so multiply by feature_dim.
feature_dim = resolve_shape(x)[-1]
corr *= feature_dim
return corr
def local_pairwise_distances(x, y, max_distance=9):
"""Computes pairwise squared l2 distances using a local search window.
Optimized implementation using correlation_cost.
Args:
x: Float32 tensor of shape [height, width, feature_dim].
y: Float32 tensor of shape [height, width, feature_dim].
max_distance: Integer, the maximum distance in pixel coordinates
per dimension which is considered to be in the search window.
Returns:
Float32 distances tensor of shape
[height, width, (2 * max_distance + 1) ** 2].
"""
with tf.name_scope('local_pairwise_distances'):
# d[i,j] = (x[i] - y[j]) * (x[i] - y[j])'
# = sum(x[i]^2, -1) + sum(y[j]^2, -1) - 2 * x[i] * y[j]'
corr = cross_correlate(x, y, max_distance=max_distance)
xs = tf.reduce_sum(x * x, axis=2)[..., tf.newaxis]
ys = tf.reduce_sum(y * y, axis=2)[..., tf.newaxis]
ones_ys = tf.ones_like(ys)
ys = cross_correlate(ones_ys, ys, max_distance=max_distance)
d = xs + ys - 2 * corr
# Boundary should be set to Inf.
boundary = tf.equal(
cross_correlate(ones_ys, ones_ys, max_distance=max_distance), 0)
d = tf.where(boundary, tf.fill(tf.shape(d), tf.constant(np.float('inf'))),
d)
return d
def local_pairwise_distances2(x, y, max_distance=9):
"""Computes pairwise squared l2 distances using a local search window.
Naive implementation using map_fn.
Used as a slow fallback for when correlation_cost is not available.
Args:
x: Float32 tensor of shape [height, width, feature_dim].
y: Float32 tensor of shape [height, width, feature_dim].
max_distance: Integer, the maximum distance in pixel coordinates
per dimension which is considered to be in the search window.
Returns:
Float32 distances tensor of shape
[height, width, (2 * max_distance + 1) ** 2].
"""
with tf.name_scope('local_pairwise_distances2'):
padding_val = 1e20
padded_y = tf.pad(y, [[max_distance, max_distance],
[max_distance, max_distance], [0, 0]],
constant_values=padding_val)
height, width, _ = resolve_shape(x)
dists = []
for y_start in range(2 * max_distance + 1):
y_end = y_start + height
y_slice = padded_y[y_start:y_end]
for x_start in range(2 * max_distance + 1):
x_end = x_start + width
offset_y = y_slice[:, x_start:x_end]
dist = tf.reduce_sum(tf.squared_difference(x, offset_y), axis=2)
dists.append(dist)
dists = tf.stack(dists, axis=2)
return dists
def majority_vote(labels):
"""Performs a label majority vote along axis 1.
Second try, hopefully this time more efficient.
We assume that the labels are contiguous starting from 0.
It will also work for non-contiguous labels, but be inefficient.
Args:
labels: Int tensor of shape [n, k]
Returns:
The majority of labels along axis 1
"""
max_label = tf.reduce_max(labels)
one_hot = tf.one_hot(labels, depth=max_label + 1)
summed = tf.reduce_sum(one_hot, axis=1)
majority = tf.argmax(summed, axis=1)
return majority
def assign_labels_by_nearest_neighbors(reference_embeddings, query_embeddings,
reference_labels, k=1):
"""Segments by nearest neighbor query wrt the reference frame.
Args:
reference_embeddings: Tensor of shape [height, width, embedding_dim],
the embedding vectors for the reference frame
query_embeddings: Tensor of shape [n_query_images, height, width,
embedding_dim], the embedding vectors for the query frames
reference_labels: Tensor of shape [height, width, 1], the class labels of
the reference frame
k: Integer, the number of nearest neighbors to use
Returns:
The labels of the nearest neighbors as [n_query_frames, height, width, 1]
tensor
Raises:
ValueError: If k < 1.
"""
if k < 1:
raise ValueError('k must be at least 1')
dists = flattened_pairwise_distances(reference_embeddings, query_embeddings)
if k == 1:
nn_indices = tf.argmin(dists, axis=1)[..., tf.newaxis]
else:
_, nn_indices = tf.nn.top_k(-dists, k, sorted=False)
reference_labels = tf.reshape(reference_labels, [-1])
nn_labels = tf.gather(reference_labels, nn_indices)
if k == 1:
nn_labels = tf.squeeze(nn_labels, axis=1)
else:
nn_labels = majority_vote(nn_labels)
height = tf.shape(reference_embeddings)[0]
width = tf.shape(reference_embeddings)[1]
n_query_frames = query_embeddings.shape[0]
nn_labels = tf.reshape(nn_labels, [n_query_frames, height, width, 1])
return nn_labels
def flattened_pairwise_distances(reference_embeddings, query_embeddings):
"""Calculates flattened tensor of pairwise distances between ref and query.
Args:
reference_embeddings: Tensor of shape [..., embedding_dim],
the embedding vectors for the reference frame
query_embeddings: Tensor of shape [n_query_images, height, width,
embedding_dim], the embedding vectors for the query frames.
Returns:
A distance tensor of shape [reference_embeddings.size / embedding_dim,
query_embeddings.size / embedding_dim]
"""
embedding_dim = resolve_shape(query_embeddings)[-1]
reference_embeddings = tf.reshape(reference_embeddings, [-1, embedding_dim])
first_dim = -1
query_embeddings = tf.reshape(query_embeddings, [first_dim, embedding_dim])
dists = pairwise_distances(query_embeddings, reference_embeddings)
return dists
def nearest_neighbor_features_per_object(
reference_embeddings, query_embeddings, reference_labels,
max_neighbors_per_object, k_nearest_neighbors, gt_ids=None, n_chunks=100):
"""Calculates the distance to the nearest neighbor per object.
For every pixel of query_embeddings calculate the distance to the
nearest neighbor in the (possibly subsampled) reference_embeddings per object.
Args:
reference_embeddings: Tensor of shape [height, width, embedding_dim],
the embedding vectors for the reference frame.
query_embeddings: Tensor of shape [n_query_images, height, width,
embedding_dim], the embedding vectors for the query frames.
reference_labels: Tensor of shape [height, width, 1], the class labels of
the reference frame.
max_neighbors_per_object: Integer, the maximum number of candidates
for the nearest neighbor query per object after subsampling,
or 0 for no subsampling.
k_nearest_neighbors: Integer, the number of nearest neighbors to use.
gt_ids: Int tensor of shape [n_objs] of the sorted unique ground truth
ids in the first frame. If None, it will be derived from
reference_labels.
n_chunks: Integer, the number of chunks to use to save memory
(set to 1 for no chunking).
Returns:
nn_features: A float32 tensor of nearest neighbor features of shape
[n_query_images, height, width, n_objects, feature_dim].
gt_ids: An int32 tensor of the unique sorted object ids present
in the reference labels.
"""
with tf.name_scope('nn_features_per_object'):
reference_labels_flat = tf.reshape(reference_labels, [-1])
if gt_ids is None:
ref_obj_ids, _ = tf.unique(reference_labels_flat)
ref_obj_ids = tf.contrib.framework.sort(ref_obj_ids)
gt_ids = ref_obj_ids
embedding_dim = resolve_shape(reference_embeddings)[-1]
reference_embeddings_flat = tf.reshape(reference_embeddings,
[-1, embedding_dim])
reference_embeddings_flat, reference_labels_flat = (
subsample_reference_embeddings_and_labels(reference_embeddings_flat,
reference_labels_flat,
gt_ids,
max_neighbors_per_object))
shape = resolve_shape(query_embeddings)
query_embeddings_flat = tf.reshape(query_embeddings, [-1, embedding_dim])
nn_features = _nearest_neighbor_features_per_object_in_chunks(
reference_embeddings_flat, query_embeddings_flat, reference_labels_flat,
gt_ids, k_nearest_neighbors, n_chunks)
nn_features_dim = resolve_shape(nn_features)[-1]
nn_features_reshaped = tf.reshape(nn_features,
tf.stack(shape[:3] + [tf.size(gt_ids),
nn_features_dim]))
return nn_features_reshaped, gt_ids
def _nearest_neighbor_features_per_object_in_chunks(
reference_embeddings_flat, query_embeddings_flat, reference_labels_flat,
ref_obj_ids, k_nearest_neighbors, n_chunks):
"""Calculates the nearest neighbor features per object in chunks to save mem.
Uses chunking to bound the memory use.
Args:
reference_embeddings_flat: Tensor of shape [n, embedding_dim],
the embedding vectors for the reference frame.
query_embeddings_flat: Tensor of shape [m, embedding_dim], the embedding
vectors for the query frames.
reference_labels_flat: Tensor of shape [n], the class labels of the
reference frame.
ref_obj_ids: int tensor of unique object ids in the reference labels.
k_nearest_neighbors: Integer, the number of nearest neighbors to use.
n_chunks: Integer, the number of chunks to use to save memory
(set to 1 for no chunking).
Returns:
nn_features: A float32 tensor of nearest neighbor features of shape
[m, n_objects, feature_dim].
"""
chunk_size = tf.cast(tf.ceil(tf.cast(tf.shape(query_embeddings_flat)[0],
tf.float32) / n_chunks), tf.int32)
wrong_label_mask = tf.not_equal(reference_labels_flat,
ref_obj_ids[:, tf.newaxis])
all_features = []
for n in range(n_chunks):
if n_chunks == 1:
query_embeddings_flat_chunk = query_embeddings_flat
else:
chunk_start = n * chunk_size
chunk_end = (n + 1) * chunk_size
query_embeddings_flat_chunk = query_embeddings_flat[chunk_start:chunk_end]
# Use control dependencies to make sure that the chunks are not processed
# in parallel which would prevent any peak memory savings.
with tf.control_dependencies(all_features):
features = _nn_features_per_object_for_chunk(
reference_embeddings_flat, query_embeddings_flat_chunk,
wrong_label_mask, k_nearest_neighbors
)
all_features.append(features)
if n_chunks == 1:
nn_features = all_features[0]
else:
nn_features = tf.concat(all_features, axis=0)
return nn_features
def _nn_features_per_object_for_chunk(
reference_embeddings, query_embeddings, wrong_label_mask,
k_nearest_neighbors):
"""Extracts features for each object using nearest neighbor attention.
Args:
reference_embeddings: Tensor of shape [n_chunk, embedding_dim],
the embedding vectors for the reference frame.
query_embeddings: Tensor of shape [m_chunk, embedding_dim], the embedding
vectors for the query frames.
wrong_label_mask:
k_nearest_neighbors: Integer, the number of nearest neighbors to use.
Returns:
nn_features: A float32 tensor of nearest neighbor features of shape
[m_chunk, n_objects, feature_dim].
"""
reference_embeddings_key = reference_embeddings
query_embeddings_key = query_embeddings
dists = flattened_pairwise_distances(reference_embeddings_key,
query_embeddings_key)
dists = (dists[:, tf.newaxis, :] +
tf.cast(wrong_label_mask[tf.newaxis, :, :], tf.float32) *
WRONG_LABEL_PADDING_DISTANCE)
if k_nearest_neighbors == 1:
features = tf.reduce_min(dists, axis=2, keepdims=True)
else:
# Find the closest k and combine them according to attention_feature_type
dists, _ = tf.nn.top_k(-dists, k=k_nearest_neighbors)
dists = -dists
# If not enough real neighbors were found, pad with the farthest real
# neighbor.
valid_mask = tf.less(dists, WRONG_LABEL_PADDING_DISTANCE)
masked_dists = dists * tf.cast(valid_mask, tf.float32)
pad_dist = tf.tile(tf.reduce_max(masked_dists, axis=2)[..., tf.newaxis],
multiples=[1, 1, k_nearest_neighbors])
dists = tf.where(valid_mask, dists, pad_dist)
# take mean of distances
features = tf.reduce_mean(dists, axis=2, keepdims=True)
return features
def create_embedding_segmentation_features(features, feature_dimension,
n_layers, kernel_size, reuse,
atrous_rates=None):
"""Extracts features which can be used to estimate the final segmentation.
Args:
features: input features of shape [batch, height, width, features]
feature_dimension: Integer, the dimensionality used in the segmentation
head layers.
n_layers: Integer, the number of layers in the segmentation head.
kernel_size: Integer, the kernel size used in the segmentation head.
reuse: reuse mode for the variable_scope.
atrous_rates: List of integers of length n_layers, the atrous rates to use.
Returns:
Features to be used to estimate the segmentation labels of shape
[batch, height, width, embedding_seg_feat_dim].
"""
if atrous_rates is None or not atrous_rates:
atrous_rates = [1 for _ in range(n_layers)]
assert len(atrous_rates) == n_layers
with tf.variable_scope('embedding_seg', reuse=reuse):
for n in range(n_layers):
features = model.split_separable_conv2d(
features, feature_dimension, kernel_size=kernel_size,
rate=atrous_rates[n], scope='split_separable_conv2d_{}'.format(n))
return features
def add_image_summaries(images, nn_features, logits, batch_size,
prev_frame_nn_features=None):
"""Adds image summaries of input images, attention features and logits.
Args:
images: Image tensor of shape [batch, height, width, channels].
nn_features: Nearest neighbor attention features of shape
[batch_size, height, width, n_objects, 1].
logits: Float32 tensor of logits.
batch_size: Integer, the number of videos per clone per mini-batch.
prev_frame_nn_features: Nearest neighbor attention features wrt. the
last frame of shape [batch_size, height, width, n_objects, 1].
Can be None.
"""
# Separate reference and query images.
reshaped_images = tf.reshape(images, tf.stack(
[batch_size, -1] + resolve_shape(images)[1:]))
reference_images = reshaped_images[:, 0]
query_images = reshaped_images[:, 1:]
query_images_reshaped = tf.reshape(query_images, tf.stack(
[-1] + resolve_shape(images)[1:]))
tf.summary.image('ref_images', reference_images, max_outputs=batch_size)
tf.summary.image('query_images', query_images_reshaped, max_outputs=10)
predictions = tf.cast(
tf.argmax(logits, axis=-1), tf.uint8)[..., tf.newaxis]
# Scale up so that we can actually see something.
tf.summary.image('predictions', predictions * 32, max_outputs=10)
# We currently only show the first dimension of the features for background
# and the first foreground object.
tf.summary.image('nn_fg_features', nn_features[..., 0:1, 0],
max_outputs=batch_size)
if prev_frame_nn_features is not None:
tf.summary.image('nn_fg_features_prev', prev_frame_nn_features[..., 0:1, 0],
max_outputs=batch_size)
tf.summary.image('nn_bg_features', nn_features[..., 1:2, 0],
max_outputs=batch_size)
if prev_frame_nn_features is not None:
tf.summary.image('nn_bg_features_prev',
prev_frame_nn_features[..., 1:2, 0],
max_outputs=batch_size)
def get_embeddings(images, model_options, embedding_dimension):
"""Extracts embedding vectors for images. Should only be used for inference.
Args:
images: A tensor of shape [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
embedding_dimension: Integer, the dimension of the embedding.
Returns:
embeddings: A tensor of shape [batch, height, width, embedding_dimension].
"""
features, end_points = model.extract_features(
images,
model_options,
is_training=False)
if model_options.decoder_output_stride is not None:
decoder_output_stride = min(model_options.decoder_output_stride)
if model_options.crop_size is None:
height = tf.shape(images)[1]
width = tf.shape(images)[2]
else:
height, width = model_options.crop_size
features = model.refine_by_decoder(
features,
end_points,
crop_size=[height, width],
decoder_output_stride=[decoder_output_stride],
decoder_use_separable_conv=model_options.decoder_use_separable_conv,
model_variant=model_options.model_variant,
is_training=False)
with tf.variable_scope('embedding'):
embeddings = split_separable_conv2d_with_identity_initializer(
features, embedding_dimension, scope='split_separable_conv2d')
return embeddings
def get_logits_with_matching(images,
model_options,
weight_decay=0.0001,
reuse=None,
is_training=False,
fine_tune_batch_norm=False,
reference_labels=None,
batch_size=None,
num_frames_per_video=None,
embedding_dimension=None,
max_neighbors_per_object=0,
k_nearest_neighbors=1,
use_softmax_feedback=True,
initial_softmax_feedback=None,
embedding_seg_feature_dimension=256,
embedding_seg_n_layers=4,
embedding_seg_kernel_size=7,
embedding_seg_atrous_rates=None,
normalize_nearest_neighbor_distances=True,
also_attend_to_previous_frame=True,
damage_initial_previous_frame_mask=False,
use_local_previous_frame_attention=True,
previous_frame_attention_window_size=15,
use_first_frame_matching=True,
also_return_embeddings=False,
ref_embeddings=None):
"""Gets the logits by atrous/image spatial pyramid pooling using attention.
Args:
images: A tensor of size [batch, height, width, channels].
model_options: A ModelOptions instance to configure models.
weight_decay: The weight decay for model variables.
reuse: Reuse the model variables or not.
is_training: Is training or not.
fine_tune_batch_norm: Fine-tune the batch norm parameters or not.
reference_labels: The segmentation labels of the reference frame on which
attention is applied.
batch_size: Integer, the number of videos on a batch
num_frames_per_video: Integer, the number of frames per video
embedding_dimension: Integer, the dimension of the embedding
max_neighbors_per_object: Integer, the maximum number of candidates
for the nearest neighbor query per object after subsampling.
Can be 0 for no subsampling.
k_nearest_neighbors: Integer, the number of nearest neighbors to use.
use_softmax_feedback: Boolean, whether to give the softmax predictions of
the last frame as additional input to the segmentation head.
initial_softmax_feedback: List of Float32 tensors, or None. Can be used to
initialize the softmax predictions used for the feedback loop.
Only has an effect if use_softmax_feedback is True.
embedding_seg_feature_dimension: Integer, the dimensionality used in the
segmentation head layers.
embedding_seg_n_layers: Integer, the number of layers in the segmentation
head.
embedding_seg_kernel_size: Integer, the kernel size used in the
segmentation head.
embedding_seg_atrous_rates: List of integers of length
embedding_seg_n_layers, the atrous rates to use for the segmentation head.
normalize_nearest_neighbor_distances: Boolean, whether to normalize the
nearest neighbor distances to [0,1] using sigmoid, scale and shift.
also_attend_to_previous_frame: Boolean, whether to also use nearest
neighbor attention with respect to the previous frame.
damage_initial_previous_frame_mask: Boolean, whether to artificially damage
the initial previous frame mask. Only has an effect if
also_attend_to_previous_frame is True.
use_local_previous_frame_attention: Boolean, whether to restrict the
previous frame attention to a local search window.
Only has an effect, if also_attend_to_previous_frame is True.
previous_frame_attention_window_size: Integer, the window size used for
local previous frame attention, if use_local_previous_frame_attention
is True.
use_first_frame_matching: Boolean, whether to extract features by matching
to the reference frame. This should always be true except for ablation
experiments.
also_return_embeddings: Boolean, whether to return the embeddings as well.
ref_embeddings: Tuple of
(first_frame_embeddings, previous_frame_embeddings),
each of shape [batch, height, width, embedding_dimension], or None.
Returns:
outputs_to_logits: A map from output_type to logits.
If also_return_embeddings is True, it will also return an embeddings
tensor of shape [batch, height, width, embedding_dimension].
"""
features, end_points = model.extract_features(
images,
model_options,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm)
if model_options.decoder_output_stride:
decoder_output_stride = min(model_options.decoder_output_stride)
if model_options.crop_size is None:
height = tf.shape(images)[1]
width = tf.shape(images)[2]
else:
height, width = model_options.crop_size
decoder_height = model.scale_dimension(height, 1.0 / decoder_output_stride)
decoder_width = model.scale_dimension(width, 1.0 / decoder_output_stride)
features = model.refine_by_decoder(
features,
end_points,
crop_size=[height, width],
decoder_output_stride=[decoder_output_stride],
decoder_use_separable_conv=model_options.decoder_use_separable_conv,
model_variant=model_options.model_variant,
weight_decay=weight_decay,
reuse=reuse,
is_training=is_training,
fine_tune_batch_norm=fine_tune_batch_norm)
with tf.variable_scope('embedding', reuse=reuse):
embeddings = split_separable_conv2d_with_identity_initializer(
features, embedding_dimension, scope='split_separable_conv2d')
embeddings = tf.identity(embeddings, name='embeddings')
scaled_reference_labels = tf.image.resize_nearest_neighbor(
reference_labels,
resolve_shape(embeddings, 4)[1:3],
align_corners=True)
h, w = decoder_height, decoder_width
if num_frames_per_video is None:
num_frames_per_video = tf.size(embeddings) // (
batch_size * h * w * embedding_dimension)
new_labels_shape = tf.stack([batch_size, -1, h, w, 1])
reshaped_reference_labels = tf.reshape(scaled_reference_labels,
new_labels_shape)
new_embeddings_shape = tf.stack([batch_size,
num_frames_per_video, h, w,
embedding_dimension])
reshaped_embeddings = tf.reshape(embeddings, new_embeddings_shape)
all_nn_features = []
all_ref_obj_ids = []
# To keep things simple, we do all this separate for each sequence for now.
for n in range(batch_size):
embedding = reshaped_embeddings[n]
if ref_embeddings is None:
n_chunks = 100
reference_embedding = embedding[0]
if also_attend_to_previous_frame or use_softmax_feedback:
queries_embedding = embedding[2:]
else:
queries_embedding = embedding[1:]
else:
if USE_CORRELATION_COST:
n_chunks = 20
else:
n_chunks = 500
reference_embedding = ref_embeddings[0][n]
queries_embedding = embedding
reference_labels = reshaped_reference_labels[n][0]
nn_features_n, ref_obj_ids = nearest_neighbor_features_per_object(
reference_embedding, queries_embedding, reference_labels,
max_neighbors_per_object, k_nearest_neighbors, n_chunks=n_chunks)
if normalize_nearest_neighbor_distances:
nn_features_n = (tf.nn.sigmoid(nn_features_n) - 0.5) * 2
all_nn_features.append(nn_features_n)
all_ref_obj_ids.append(ref_obj_ids)
feat_dim = resolve_shape(features)[-1]
features = tf.reshape(features, tf.stack(
[batch_size, num_frames_per_video, h, w, feat_dim]))
if ref_embeddings is None:
# Strip the features for the reference frame.
if also_attend_to_previous_frame or use_softmax_feedback:
features = features[:, 2:]
else:
features = features[:, 1:]
# To keep things simple, we do all this separate for each sequence for now.
outputs_to_logits = {output: [] for
output in model_options.outputs_to_num_classes}
for n in range(batch_size):
features_n = features[n]
nn_features_n = all_nn_features[n]
nn_features_n_tr = tf.transpose(nn_features_n, [3, 0, 1, 2, 4])
n_objs = tf.shape(nn_features_n_tr)[0]
# Repeat features for every object.
features_n_tiled = tf.tile(features_n[tf.newaxis],
multiples=[n_objs, 1, 1, 1, 1])
prev_frame_labels = None
if also_attend_to_previous_frame:
prev_frame_labels = reshaped_reference_labels[n, 1]
if is_training and damage_initial_previous_frame_mask:
# Damage the previous frame masks.
prev_frame_labels = mask_damaging.damage_masks(prev_frame_labels,
dilate=False)
tf.summary.image('prev_frame_labels',
tf.cast(prev_frame_labels[tf.newaxis],
tf.uint8) * 32)
initial_softmax_feedback_n = create_initial_softmax_from_labels(
prev_frame_labels, reshaped_reference_labels[n][0],
decoder_output_stride=None, reduce_labels=True)
elif initial_softmax_feedback is not None:
initial_softmax_feedback_n = initial_softmax_feedback[n]
else:
initial_softmax_feedback_n = None
if initial_softmax_feedback_n is None:
last_softmax = tf.zeros((n_objs, h, w, 1), dtype=tf.float32)
else:
last_softmax = tf.transpose(initial_softmax_feedback_n, [2, 0, 1])[
..., tf.newaxis]
assert len(model_options.outputs_to_num_classes) == 1
output = model_options.outputs_to_num_classes.keys()[0]
logits = []
n_ref_frames = 1
prev_frame_nn_features_n = None
if also_attend_to_previous_frame or use_softmax_feedback:
n_ref_frames += 1
if ref_embeddings is not None:
n_ref_frames = 0
for t in range(num_frames_per_video - n_ref_frames):
to_concat = [features_n_tiled[:, t]]
if use_first_frame_matching:
to_concat.append(nn_features_n_tr[:, t])
if use_softmax_feedback:
to_concat.append(last_softmax)
if also_attend_to_previous_frame:
assert normalize_nearest_neighbor_distances, (
'previous frame attention currently only works when normalized '
'distances are used')
embedding = reshaped_embeddings[n]
if ref_embeddings is None:
last_frame_embedding = embedding[t + 1]
query_embeddings = embedding[t + 2, tf.newaxis]
else:
last_frame_embedding = ref_embeddings[1][0]
query_embeddings = embedding
if use_local_previous_frame_attention:
assert query_embeddings.shape[0] == 1
prev_frame_nn_features_n = (
local_previous_frame_nearest_neighbor_features_per_object(
last_frame_embedding,
query_embeddings[0],
prev_frame_labels,
all_ref_obj_ids[n],
max_distance=previous_frame_attention_window_size)
)
else:
prev_frame_nn_features_n, _ = (
nearest_neighbor_features_per_object(
last_frame_embedding, query_embeddings, prev_frame_labels,
max_neighbors_per_object, k_nearest_neighbors,
gt_ids=all_ref_obj_ids[n]))
prev_frame_nn_features_n = (tf.nn.sigmoid(
prev_frame_nn_features_n) - 0.5) * 2
prev_frame_nn_features_n_sq = tf.squeeze(prev_frame_nn_features_n,
axis=0)
prev_frame_nn_features_n_tr = tf.transpose(
prev_frame_nn_features_n_sq, [2, 0, 1, 3])
to_concat.append(prev_frame_nn_features_n_tr)
features_n_concat_t = tf.concat(to_concat, axis=-1)
embedding_seg_features_n_t = (
create_embedding_segmentation_features(
features_n_concat_t, embedding_seg_feature_dimension,
embedding_seg_n_layers, embedding_seg_kernel_size,
reuse or n > 0, atrous_rates=embedding_seg_atrous_rates))
logits_t = model.get_branch_logits(
embedding_seg_features_n_t,
1,
model_options.atrous_rates,
aspp_with_batch_norm=model_options.aspp_with_batch_norm,
kernel_size=model_options.logits_kernel_size,
weight_decay=weight_decay,
reuse=reuse or n > 0 or t > 0,
scope_suffix=output
)
logits.append(logits_t)
prev_frame_labels = tf.transpose(tf.argmax(logits_t, axis=0),
[2, 0, 1])
last_softmax = tf.nn.softmax(logits_t, axis=0)
logits = tf.stack(logits, axis=1)
logits_shape = tf.stack(
[n_objs, num_frames_per_video - n_ref_frames] +
resolve_shape(logits)[2:-1])
logits_reshaped = tf.reshape(logits, logits_shape)
logits_transposed = tf.transpose(logits_reshaped, [1, 2, 3, 0])
outputs_to_logits[output].append(logits_transposed)
add_image_summaries(
images[n * num_frames_per_video: (n+1) * num_frames_per_video],
nn_features_n,
logits_transposed,
batch_size=1,
prev_frame_nn_features=prev_frame_nn_features_n)
if also_return_embeddings:
return outputs_to_logits, embeddings
else:
return outputs_to_logits
def subsample_reference_embeddings_and_labels(
reference_embeddings_flat, reference_labels_flat, ref_obj_ids,
max_neighbors_per_object):
"""Subsamples the reference embedding vectors and labels.
After subsampling, at most max_neighbors_per_object items will remain per
class.
Args:
reference_embeddings_flat: Tensor of shape [n, embedding_dim],
the embedding vectors for the reference frame.
reference_labels_flat: Tensor of shape [n, 1],
the class labels of the reference frame.
ref_obj_ids: An int32 tensor of the unique object ids present
in the reference labels.
max_neighbors_per_object: Integer, the maximum number of candidates
for the nearest neighbor query per object after subsampling,
or 0 for no subsampling.
Returns:
reference_embeddings_flat: Tensor of shape [n_sub, embedding_dim],
the subsampled embedding vectors for the reference frame.
reference_labels_flat: Tensor of shape [n_sub, 1],
the class labels of the reference frame.
"""
if max_neighbors_per_object == 0:
return reference_embeddings_flat, reference_labels_flat
same_label_mask = tf.equal(reference_labels_flat[tf.newaxis, :],
ref_obj_ids[:, tf.newaxis])
max_neighbors_per_object_repeated = tf.tile(
tf.constant(max_neighbors_per_object)[tf.newaxis],
multiples=[tf.size(ref_obj_ids)])
# Somehow map_fn on GPU caused trouble sometimes, so let's put it on CPU
# for now.
with tf.device('cpu:0'):
subsampled_indices = tf.map_fn(_create_subsampling_mask,
(same_label_mask,
max_neighbors_per_object_repeated),
dtype=tf.int64,
name='subsample_labels_map_fn',
parallel_iterations=1)
mask = tf.not_equal(subsampled_indices, tf.constant(-1, dtype=tf.int64))
masked_indices = tf.boolean_mask(subsampled_indices, mask)
reference_embeddings_flat = tf.gather(reference_embeddings_flat,
masked_indices)
reference_labels_flat = tf.gather(reference_labels_flat, masked_indices)
return reference_embeddings_flat, reference_labels_flat
def _create_subsampling_mask(args):
"""Creates boolean mask which can be used to subsample the labels.
Args:
args: tuple of (label_mask, max_neighbors_per_object), where label_mask
is the mask to be subsampled and max_neighbors_per_object is a int scalar,
the maximum number of neighbors to be retained after subsampling.
Returns:
The boolean mask for subsampling the labels.
"""
label_mask, max_neighbors_per_object = args
indices = tf.squeeze(tf.where(label_mask), axis=1)
shuffled_indices = tf.random_shuffle(indices)
subsampled_indices = shuffled_indices[:max_neighbors_per_object]
n_pad = max_neighbors_per_object - tf.size(subsampled_indices)
padded_label = -1
padding = tf.fill((n_pad,), tf.constant(padded_label, dtype=tf.int64))
padded = tf.concat([subsampled_indices, padding], axis=0)
return padded
def conv2d_identity_initializer(scale=1.0, mean=0, stddev=3e-2):
"""Creates an identity initializer for TensorFlow conv2d.
We add a small amount of normal noise to the initialization matrix.
Code copied from lcchen@.
Args:
scale: The scale coefficient for the identity weight matrix.
mean: A 0-D Tensor or Python value of type `dtype`. The mean of the
truncated normal distribution.
stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation
of the truncated normal distribution.
Returns:
An identity initializer function for TensorFlow conv2d.
"""
def _initializer(shape, dtype=tf.float32, partition_info=None):
"""Returns the identity matrix scaled by `scale`.
Args:
shape: A tuple of int32 numbers indicating the shape of the initializing
matrix.
dtype: The data type of the initializing matrix.
partition_info: (Optional) variable_scope._PartitionInfo object holding
additional information about how the variable is partitioned. This input
is not used in our case, but is required by TensorFlow.
Returns:
A identity matrix.
Raises:
ValueError: If len(shape) != 4, or shape[0] != shape[1], or shape[0] is
not odd, or shape[1] is not odd..
"""
del partition_info
if len(shape) != 4:
raise ValueError('Expect shape length to be 4.')
if shape[0] != shape[1]:
raise ValueError('Expect shape[0] = shape[1].')
if shape[0] % 2 != 1:
raise ValueError('Expect shape[0] to be odd value.')
if shape[1] % 2 != 1:
raise ValueError('Expect shape[1] to be odd value.')
weights = np.zeros(shape, dtype=np.float32)
center_y = shape[0] / 2
center_x = shape[1] / 2
min_channel = min(shape[2], shape[3])
for i in range(min_channel):
weights[center_y, center_x, i, i] = scale
return tf.constant(weights, dtype=dtype) + tf.truncated_normal(
shape, mean=mean, stddev=stddev, dtype=dtype)
return _initializer
def split_separable_conv2d_with_identity_initializer(
inputs,
filters,
kernel_size=3,
rate=1,
weight_decay=0.00004,
scope=None):
"""Splits a separable conv2d into depthwise and pointwise conv2d.
This operation differs from `tf.layers.separable_conv2d` as this operation
applies activation function between depthwise and pointwise conv2d.
Args:
inputs: Input tensor with shape [batch, height, width, channels].
filters: Number of filters in the 1x1 pointwise convolution.
kernel_size: A list of length 2: [kernel_height, kernel_width] of
of the filters. Can be an int if both values are the same.
rate: Atrous convolution rate for the depthwise convolution.
weight_decay: The weight decay to use for regularizing the model.
scope: Optional scope for the operation.
Returns:
Computed features after split separable conv2d.
"""
initializer = conv2d_identity_initializer()
outputs = slim.separable_conv2d(
inputs,
None,
kernel_size=kernel_size,
depth_multiplier=1,
rate=rate,
weights_initializer=initializer,
weights_regularizer=None,
scope=scope + '_depthwise')
return slim.conv2d(
outputs,
filters,
1,
weights_initializer=initializer,
weights_regularizer=slim.l2_regularizer(weight_decay),
scope=scope + '_pointwise')
def create_initial_softmax_from_labels(last_frame_labels, reference_labels,
decoder_output_stride, reduce_labels):
"""Creates initial softmax predictions from last frame labels.
Args:
last_frame_labels: last frame labels of shape [1, height, width, 1].
reference_labels: reference frame labels of shape [1, height, width, 1].
decoder_output_stride: Integer, the stride of the decoder. Can be None, in
this case it's assumed that the last_frame_labels and reference_labels
are already scaled to the decoder output resolution.
reduce_labels: Boolean, whether to reduce the depth of the softmax one_hot
encoding to the actual number of labels present in the reference frame
(otherwise the depth will be the highest label index + 1).
Returns:
init_softmax: the initial softmax predictions.
"""
if decoder_output_stride is None:
labels_output_size = last_frame_labels
reference_labels_output_size = reference_labels
else:
h = tf.shape(last_frame_labels)[1]
w = tf.shape(last_frame_labels)[2]
h_sub = model.scale_dimension(h, 1.0 / decoder_output_stride)
w_sub = model.scale_dimension(w, 1.0 / decoder_output_stride)
labels_output_size = tf.image.resize_nearest_neighbor(
last_frame_labels, [h_sub, w_sub], align_corners=True)
reference_labels_output_size = tf.image.resize_nearest_neighbor(
reference_labels, [h_sub, w_sub], align_corners=True)
if reduce_labels:
unique_labels, _ = tf.unique(tf.reshape(reference_labels_output_size, [-1]))
depth = tf.size(unique_labels)
else:
depth = tf.reduce_max(reference_labels_output_size) + 1
one_hot_assertion = tf.assert_less(tf.reduce_max(labels_output_size), depth)
with tf.control_dependencies([one_hot_assertion]):
init_softmax = tf.one_hot(tf.squeeze(labels_output_size,
axis=-1),
depth=depth,
dtype=tf.float32)
return init_softmax
def local_previous_frame_nearest_neighbor_features_per_object(
prev_frame_embedding, query_embedding, prev_frame_labels,
gt_ids, max_distance=9):
"""Computes nearest neighbor features while only allowing local matches.
Args:
prev_frame_embedding: Tensor of shape [height, width, embedding_dim],
the embedding vectors for the last frame.
query_embedding: Tensor of shape [height, width, embedding_dim],
the embedding vectors for the query frames.
prev_frame_labels: Tensor of shape [height, width, 1], the class labels of
the previous frame.
gt_ids: Int Tensor of shape [n_objs] of the sorted unique ground truth
ids in the first frame.
max_distance: Integer, the maximum distance allowed for local matching.
Returns:
nn_features: A float32 np.array of nearest neighbor features of shape
[1, height, width, n_objects, 1].
"""
with tf.name_scope(
'local_previous_frame_nearest_neighbor_features_per_object'):
if USE_CORRELATION_COST:
tf.logging.info('Using correlation_cost.')
d = local_pairwise_distances(query_embedding, prev_frame_embedding,
max_distance=max_distance)
else:
# Slow fallback in case correlation_cost is not available.
tf.logging.warn('correlation cost is not available, using slow fallback '
'implementation.')
d = local_pairwise_distances2(query_embedding, prev_frame_embedding,
max_distance=max_distance)
d = (tf.nn.sigmoid(d) - 0.5) * 2
height = tf.shape(prev_frame_embedding)[0]
width = tf.shape(prev_frame_embedding)[1]
# Create offset versions of the mask.
if USE_CORRELATION_COST:
# New, faster code with cross-correlation via correlation_cost.
# Due to padding we have to add 1 to the labels.
offset_labels = correlation_cost_op.correlation_cost(
tf.ones((1, height, width, 1)),
tf.cast(prev_frame_labels + 1, tf.float32)[tf.newaxis],
kernel_size=1,
max_displacement=max_distance, stride_1=1, stride_2=1,
pad=max_distance)
offset_labels = tf.squeeze(offset_labels, axis=0)[..., tf.newaxis]
# Subtract the 1 again and round.
offset_labels = tf.round(offset_labels - 1)
offset_masks = tf.equal(
offset_labels,
tf.cast(gt_ids, tf.float32)[tf.newaxis, tf.newaxis, tf.newaxis, :])
else:
# Slower code, without dependency to correlation_cost
masks = tf.equal(prev_frame_labels, gt_ids[tf.newaxis, tf.newaxis])
padded_masks = tf.pad(masks,
[[max_distance, max_distance],
[max_distance, max_distance],
[0, 0]])
offset_masks = []
for y_start in range(2 * max_distance + 1):
y_end = y_start + height
masks_slice = padded_masks[y_start:y_end]
for x_start in range(2 * max_distance + 1):
x_end = x_start + width
offset_mask = masks_slice[:, x_start:x_end]
offset_masks.append(offset_mask)
offset_masks = tf.stack(offset_masks, axis=2)
pad = tf.ones((height, width, (2 * max_distance + 1) ** 2, tf.size(gt_ids)))
d_tiled = tf.tile(d[..., tf.newaxis], multiples=(1, 1, 1, tf.size(gt_ids)))
d_masked = tf.where(offset_masks, d_tiled, pad)
dists = tf.reduce_min(d_masked, axis=2)
dists = tf.reshape(dists, (1, height, width, tf.size(gt_ids), 1))
return dists
|