Spaces:
Sleeping
Sleeping
File size: 17,394 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
import numpy as np
import tensorflow as tf
from utils import linear, log_sum_exp
class Poisson(object):
"""Poisson distributon
Computes the log probability under the model.
"""
def __init__(self, log_rates):
""" Create Poisson distributions with log_rates parameters.
Args:
log_rates: a tensor-like list of log rates underlying the Poisson dist.
"""
self.logr = log_rates
def logp(self, bin_counts):
"""Compute the log probability for the counts in the bin, under the model.
Args:
bin_counts: array-like integer counts
Returns:
The log-probability under the Poisson models for each element of
bin_counts.
"""
k = tf.to_float(bin_counts)
# log poisson(k, r) = log(r^k * e^(-r) / k!) = k log(r) - r - log k!
# log poisson(k, r=exp(x)) = k * x - exp(x) - lgamma(k + 1)
return k * self.logr - tf.exp(self.logr) - tf.lgamma(k + 1)
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0):
"""Log-likelihood under a Gaussian distribution with diagonal covariance.
Returns the log-likelihood for each dimension. One should sum the
results for the log-likelihood under the full multidimensional model.
Args:
z: The value to compute the log-likelihood.
mu: The mean of the Gaussian
logvar: The log variance of the Gaussian.
Returns:
The log-likelihood under the Gaussian model.
"""
return -0.5 * (logvar + np.log(2*np.pi) + \
tf.square((z-mu)/tf.exp(0.5*logvar)))
def gaussian_pos_log_likelihood(unused_mean, logvar, noise):
"""Gaussian log-likelihood function for a posterior in VAE
Note: This function is specialized for a posterior distribution, that has the
form of z = mean + sigma * noise.
Args:
unused_mean: ignore
logvar: The log variance of the distribution
noise: The noise used in the sampling of the posterior.
Returns:
The log-likelihood under the Gaussian model.
"""
# ln N(z; mean, sigma) = - ln(sigma) - 0.5 ln 2pi - noise^2 / 2
return - 0.5 * (logvar + np.log(2 * np.pi) + tf.square(noise))
class Gaussian(object):
"""Base class for Gaussian distribution classes."""
pass
class DiagonalGaussian(Gaussian):
"""Diagonal Gaussian with different constant mean and variances in each
dimension.
"""
def __init__(self, batch_size, z_size, mean, logvar):
"""Create a diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
mean: The N-D mean of the distribution.
logvar: The N-D log variance of the diagonal distribution.
"""
size__xz = [None, z_size]
self.mean = mean # bxn already
self.logvar = logvar # bxn already
self.noise = noise = tf.random_normal(tf.shape(logvar))
self.sample = mean + tf.exp(0.5 * logvar) * noise
mean.set_shape(size__xz)
logvar.set_shape(size__xz)
self.sample.set_shape(size__xz)
def logp(self, z=None):
"""Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.
"""
if z is None:
z = self.sample
# This is needed to make sure that the gradients are simple.
# The value of the function shouldn't change.
if z == self.sample:
return gaussian_pos_log_likelihood(self.mean, self.logvar, self.noise)
return diag_gaussian_log_likelihood(z, self.mean, self.logvar)
class LearnableDiagonalGaussian(Gaussian):
"""Diagonal Gaussian whose mean and variance are learned parameters."""
def __init__(self, batch_size, z_size, name, mean_init=0.0,
var_init=1.0, var_min=0.0, var_max=1000000.0):
"""Create a learnable diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
name: prefix name for the mean and log TF variables.
mean_init (optional): The N-D mean initialization of the distribution.
var_init (optional): The N-D variance initialization of the diagonal
distribution.
var_min (optional): The minimum value the learned variance can take in any
dimension.
var_max (optional): The maximum value the learned variance can take in any
dimension.
"""
size_1xn = [1, z_size]
size__xn = [None, z_size]
size_bx1 = tf.stack([batch_size, 1])
assert var_init > 0.0, "Problems"
assert var_max >= var_min, "Problems"
assert var_init >= var_min, "Problems"
assert var_max >= var_init, "Problems"
z_mean_1xn = tf.get_variable(name=name+"/mean", shape=size_1xn,
initializer=tf.constant_initializer(mean_init))
self.mean_bxn = mean_bxn = tf.tile(z_mean_1xn, size_bx1)
mean_bxn.set_shape(size__xn) # tile loses shape
log_var_init = np.log(var_init)
if var_max > var_min:
var_is_trainable = True
else:
var_is_trainable = False
z_logvar_1xn = \
tf.get_variable(name=(name+"/logvar"), shape=size_1xn,
initializer=tf.constant_initializer(log_var_init),
trainable=var_is_trainable)
if var_is_trainable:
z_logit_var_1xn = tf.exp(z_logvar_1xn)
z_var_1xn = tf.nn.sigmoid(z_logit_var_1xn)*(var_max-var_min) + var_min
z_logvar_1xn = tf.log(z_var_1xn)
logvar_bxn = tf.tile(z_logvar_1xn, size_bx1)
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(tf.shape(logvar_bxn))
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn
def logp(self, z=None):
"""Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.
"""
if z is None:
z = self.sample
# This is needed to make sure that the gradients are simple.
# The value of the function shouldn't change.
if z == self.sample_bxn:
return gaussian_pos_log_likelihood(self.mean_bxn, self.logvar_bxn,
self.noise_bxn)
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)
@property
def mean(self):
return self.mean_bxn
@property
def logvar(self):
return self.logvar_bxn
@property
def sample(self):
return self.sample_bxn
class DiagonalGaussianFromInput(Gaussian):
"""Diagonal Gaussian whose mean and variance are conditioned on other
variables.
Note: the parameters to convert from input to the learned mean and log
variance are held in this class.
"""
def __init__(self, x_bxu, z_size, name, var_min=0.0):
"""Create an input dependent diagonal Gaussian distribution.
Args:
x: The input tensor from which the mean and variance are computed,
via a linear transformation of x. I.e.
mu = Wx + b, log(var) = Mx + c
z_size: The size of the distribution.
name: The name to prefix to learned variables.
var_min (optional): Minimal variance allowed. This is an additional
way to control the amount of information getting through the stochastic
layer.
"""
size_bxn = tf.stack([tf.shape(x_bxu)[0], z_size])
self.mean_bxn = mean_bxn = linear(x_bxu, z_size, name=(name+"/mean"))
logvar_bxn = linear(x_bxu, z_size, name=(name+"/logvar"))
if var_min > 0.0:
logvar_bxn = tf.log(tf.exp(logvar_bxn) + var_min)
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(size_bxn)
self.noise_bxn.set_shape([None, z_size])
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn
def logp(self, z=None):
"""Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.
"""
if z is None:
z = self.sample
# This is needed to make sure that the gradients are simple.
# The value of the function shouldn't change.
if z == self.sample_bxn:
return gaussian_pos_log_likelihood(self.mean_bxn,
self.logvar_bxn, self.noise_bxn)
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)
@property
def mean(self):
return self.mean_bxn
@property
def logvar(self):
return self.logvar_bxn
@property
def sample(self):
return self.sample_bxn
class GaussianProcess:
"""Base class for Gaussian processes."""
pass
class LearnableAutoRegressive1Prior(GaussianProcess):
"""AR(1) model where autocorrelation and process variance are learned
parameters. Assumed zero mean.
"""
def __init__(self, batch_size, z_size,
autocorrelation_taus, noise_variances,
do_train_prior_ar_atau, do_train_prior_ar_nvar,
num_steps, name):
"""Create a learnable autoregressive (1) process.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
autocorrelation_taus: The auto correlation time constant of the AR(1)
process.
A value of 0 is uncorrelated gaussian noise.
noise_variances: The variance of the additive noise, *not* the process
variance.
do_train_prior_ar_atau: Train or leave as constant, the autocorrelation?
do_train_prior_ar_nvar: Train or leave as constant, the noise variance?
num_steps: Number of steps to run the process.
name: The name to prefix to learned TF variables.
"""
# Note the use of the plural in all of these quantities. This is intended
# to mark that even though a sample z_t from the posterior is thought of a
# single sample of a multidimensional gaussian, the prior is actually
# thought of as U AR(1) processes, where U is the dimension of the inferred
# input.
size_bx1 = tf.stack([batch_size, 1])
size__xu = [None, z_size]
# process variance, the variance at time t over all instantiations of AR(1)
# with these parameters.
log_evar_inits_1xu = tf.expand_dims(tf.log(noise_variances), 0)
self.logevars_1xu = logevars_1xu = \
tf.Variable(log_evar_inits_1xu, name=name+"/logevars", dtype=tf.float32,
trainable=do_train_prior_ar_nvar)
self.logevars_bxu = logevars_bxu = tf.tile(logevars_1xu, size_bx1)
logevars_bxu.set_shape(size__xu) # tile loses shape
# \tau, which is the autocorrelation time constant of the AR(1) process
log_atau_inits_1xu = tf.expand_dims(tf.log(autocorrelation_taus), 0)
self.logataus_1xu = logataus_1xu = \
tf.Variable(log_atau_inits_1xu, name=name+"/logatau", dtype=tf.float32,
trainable=do_train_prior_ar_atau)
# phi in x_t = \mu + phi x_tm1 + \eps
# phi = exp(-1/tau)
# phi = exp(-1/exp(logtau))
# phi = exp(-exp(-logtau))
phis_1xu = tf.exp(-tf.exp(-logataus_1xu))
self.phis_bxu = phis_bxu = tf.tile(phis_1xu, size_bx1)
phis_bxu.set_shape(size__xu)
# process noise
# pvar = evar / (1- phi^2)
# logpvar = log ( exp(logevar) / (1 - phi^2) )
# logpvar = logevar - log(1-phi^2)
# logpvar = logevar - (log(1-phi) + log(1+phi))
self.logpvars_1xu = \
logevars_1xu - tf.log(1.0-phis_1xu) - tf.log(1.0+phis_1xu)
self.logpvars_bxu = logpvars_bxu = tf.tile(self.logpvars_1xu, size_bx1)
logpvars_bxu.set_shape(size__xu)
# process mean (zero but included in for completeness)
self.pmeans_bxu = pmeans_bxu = tf.zeros_like(phis_bxu)
# For sampling from the prior during de-novo generation.
self.means_t = means_t = [None] * num_steps
self.logvars_t = logvars_t = [None] * num_steps
self.samples_t = samples_t = [None] * num_steps
self.gaussians_t = gaussians_t = [None] * num_steps
sample_bxu = tf.zeros_like(phis_bxu)
for t in range(num_steps):
# process variance used here to make process completely stationary
if t == 0:
logvar_pt_bxu = self.logpvars_bxu
else:
logvar_pt_bxu = self.logevars_bxu
z_mean_pt_bxu = pmeans_bxu + phis_bxu * sample_bxu
gaussians_t[t] = DiagonalGaussian(batch_size, z_size,
mean=z_mean_pt_bxu,
logvar=logvar_pt_bxu)
sample_bxu = gaussians_t[t].sample
samples_t[t] = sample_bxu
logvars_t[t] = logvar_pt_bxu
means_t[t] = z_mean_pt_bxu
def logp_t(self, z_t_bxu, z_tm1_bxu=None):
"""Compute the log-likelihood under the distribution for a given time t,
not the whole sequence.
Args:
z_t_bxu: sample to compute likelihood for at time t.
z_tm1_bxu (optional): sample condition probability of z_t upon.
Returns:
The likelihood of p_t under the model at time t. i.e.
p(z_t|z_tm1_bxu) = N(z_tm1_bxu * phis, eps^2)
"""
if z_tm1_bxu is None:
return diag_gaussian_log_likelihood(z_t_bxu, self.pmeans_bxu,
self.logpvars_bxu)
else:
means_t_bxu = self.pmeans_bxu + self.phis_bxu * z_tm1_bxu
logp_tgtm1_bxu = diag_gaussian_log_likelihood(z_t_bxu,
means_t_bxu,
self.logevars_bxu)
return logp_tgtm1_bxu
class KLCost_GaussianGaussian(object):
"""log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian prior. See
eqn 10 and Appendix B in VAE for latter term,
http://arxiv.org/abs/1312.6114
The log p(x|z) term is the reconstruction error under the model.
The KL term represents the penalty for passing information from the encoder
to the decoder.
To sample KL(q||p), we simply sample
ln q - ln p
by drawing samples from q and averaging.
"""
def __init__(self, zs, prior_zs):
"""Create a lower bound in three parts, normalized reconstruction
cost, normalized KL divergence cost, and their sum.
E_q[ln p(z_i | z_{i+1}) / q(z_i | x)
\int q(z) ln p(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_p^2) + \
sigma_q^2 / sigma_p^2 + (mean_p - mean_q)^2 / sigma_p^2)
\int q(z) ln q(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_q^2) + 1)
Args:
zs: posterior z ~ q(z|x)
prior_zs: prior zs
"""
# L = -KL + log p(x|z), to maximize bound on likelihood
# -L = KL - log p(x|z), to minimize bound on NLL
# so 'KL cost' is postive KL divergence
kl_b = 0.0
for z, prior_z in zip(zs, prior_zs):
assert isinstance(z, Gaussian)
assert isinstance(prior_z, Gaussian)
# ln(2pi) terms cancel
kl_b += 0.5 * tf.reduce_sum(
prior_z.logvar - z.logvar
+ tf.exp(z.logvar - prior_z.logvar)
+ tf.square((z.mean - prior_z.mean) / tf.exp(0.5 * prior_z.logvar))
- 1.0, [1])
self.kl_cost_b = kl_b
self.kl_cost = tf.reduce_mean(kl_b)
class KLCost_GaussianGaussianProcessSampled(object):
""" log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian process
prior via sampling.
The log p(x|z) term is the reconstruction error under the model.
The KL term represents the penalty for passing information from the encoder
to the decoder.
To sample KL(q||p), we simply sample
ln q - ln p
by drawing samples from q and averaging.
"""
def __init__(self, post_zs, prior_z_process):
"""Create a lower bound in three parts, normalized reconstruction
cost, normalized KL divergence cost, and their sum.
Args:
post_zs: posterior z ~ q(z|x)
prior_z_process: prior AR(1) process
"""
assert len(post_zs) > 1, "GP is for time, need more than 1 time step."
assert isinstance(prior_z_process, GaussianProcess), "Must use GP."
# L = -KL + log p(x|z), to maximize bound on likelihood
# -L = KL - log p(x|z), to minimize bound on NLL
# so 'KL cost' is postive KL divergence
z0_bxu = post_zs[0].sample
logq_bxu = post_zs[0].logp(z0_bxu)
logp_bxu = prior_z_process.logp_t(z0_bxu)
z_tm1_bxu = z0_bxu
for z_t in post_zs[1:]:
# posterior is independent in time, prior is not
z_t_bxu = z_t.sample
logq_bxu += z_t.logp(z_t_bxu)
logp_bxu += prior_z_process.logp_t(z_t_bxu, z_tm1_bxu)
z_tm1_bxu = z_t_bxu
kl_bxu = logq_bxu - logp_bxu
kl_b = tf.reduce_sum(kl_bxu, [1])
self.kl_cost_b = kl_b
self.kl_cost = tf.reduce_mean(kl_b)
|