File size: 17,394 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
import numpy as np
import tensorflow as tf
from utils import linear, log_sum_exp

class Poisson(object):
  """Poisson distributon

  Computes the log probability under the model.

  """
  def __init__(self, log_rates):
    """ Create Poisson distributions with log_rates parameters.

    Args:
      log_rates: a tensor-like list of log rates underlying the Poisson dist.
    """
    self.logr = log_rates

  def logp(self, bin_counts):
    """Compute the log probability for the counts in the bin, under the model.

    Args:
      bin_counts: array-like integer counts

    Returns:
      The log-probability under the Poisson models for each element of
      bin_counts.
    """
    k = tf.to_float(bin_counts)
    # log poisson(k, r) = log(r^k * e^(-r) / k!) = k log(r) - r - log k!
    # log poisson(k, r=exp(x)) = k * x - exp(x) - lgamma(k + 1)
    return k * self.logr - tf.exp(self.logr) - tf.lgamma(k + 1)


def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0):
  """Log-likelihood under a Gaussian distribution with diagonal covariance.
    Returns the log-likelihood for each dimension.  One should sum the
    results for the log-likelihood under the full multidimensional model.

  Args:
    z: The value to compute the log-likelihood.
    mu: The mean of the Gaussian
    logvar: The log variance of the Gaussian.

  Returns:
    The log-likelihood under the Gaussian model.
  """

  return -0.5 * (logvar + np.log(2*np.pi) + \
                 tf.square((z-mu)/tf.exp(0.5*logvar)))


def gaussian_pos_log_likelihood(unused_mean, logvar, noise):
  """Gaussian log-likelihood function for a posterior in VAE

  Note: This function is specialized for a posterior distribution, that has the
  form of z = mean + sigma * noise.

  Args:
    unused_mean: ignore
    logvar: The log variance of the distribution
    noise: The noise used in the sampling of the posterior.

  Returns:
    The log-likelihood under the Gaussian model.
  """
  # ln N(z; mean, sigma) = - ln(sigma) - 0.5 ln 2pi - noise^2 / 2
  return - 0.5 * (logvar + np.log(2 * np.pi) + tf.square(noise))


class Gaussian(object):
  """Base class for Gaussian distribution classes."""
  pass


class DiagonalGaussian(Gaussian):
  """Diagonal Gaussian with different constant mean and variances in each
  dimension.
  """

  def __init__(self, batch_size, z_size, mean, logvar):
    """Create a diagonal gaussian distribution.

    Args:
      batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
      z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
      mean: The N-D mean of the distribution.
      logvar: The N-D log variance of the diagonal distribution.
    """
    size__xz = [None, z_size]
    self.mean = mean            # bxn already
    self.logvar = logvar        # bxn already
    self.noise = noise = tf.random_normal(tf.shape(logvar))
    self.sample = mean + tf.exp(0.5 * logvar) * noise
    mean.set_shape(size__xz)
    logvar.set_shape(size__xz)
    self.sample.set_shape(size__xz)

  def logp(self, z=None):
    """Compute the log-likelihood under the distribution.

    Args:
      z (optional): value to compute likelihood for, if None, use sample.

    Returns:
      The likelihood of z under the model.
    """
    if z is None:
      z = self.sample

    # This is needed to make sure that the gradients are simple.
    # The value of the function shouldn't change.
    if z == self.sample:
      return gaussian_pos_log_likelihood(self.mean, self.logvar, self.noise)

    return diag_gaussian_log_likelihood(z, self.mean, self.logvar)


class LearnableDiagonalGaussian(Gaussian):
  """Diagonal Gaussian whose mean and variance are learned parameters."""

  def __init__(self, batch_size, z_size, name, mean_init=0.0,
               var_init=1.0, var_min=0.0, var_max=1000000.0):
    """Create a learnable diagonal gaussian distribution.

    Args:
      batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
      z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
      name: prefix name for the mean and log TF variables.
      mean_init (optional): The N-D mean initialization of the distribution.
      var_init (optional): The N-D variance initialization of the diagonal
        distribution.
      var_min (optional): The minimum value the learned variance can take in any
        dimension.
      var_max (optional): The maximum value the learned variance can take in any
        dimension.
    """

    size_1xn = [1, z_size]
    size__xn = [None, z_size]
    size_bx1 = tf.stack([batch_size, 1])
    assert var_init > 0.0, "Problems"
    assert var_max >= var_min, "Problems"
    assert var_init >= var_min, "Problems"
    assert var_max >= var_init, "Problems"


    z_mean_1xn = tf.get_variable(name=name+"/mean", shape=size_1xn,
                                 initializer=tf.constant_initializer(mean_init))
    self.mean_bxn = mean_bxn = tf.tile(z_mean_1xn, size_bx1)
    mean_bxn.set_shape(size__xn) # tile loses shape

    log_var_init = np.log(var_init)
    if var_max > var_min:
      var_is_trainable = True
    else:
      var_is_trainable = False

    z_logvar_1xn = \
        tf.get_variable(name=(name+"/logvar"), shape=size_1xn,
                        initializer=tf.constant_initializer(log_var_init),
                        trainable=var_is_trainable)

    if var_is_trainable:
      z_logit_var_1xn = tf.exp(z_logvar_1xn)
      z_var_1xn = tf.nn.sigmoid(z_logit_var_1xn)*(var_max-var_min) + var_min
      z_logvar_1xn = tf.log(z_var_1xn)

    logvar_bxn = tf.tile(z_logvar_1xn, size_bx1)
    self.logvar_bxn = logvar_bxn
    self.noise_bxn = noise_bxn = tf.random_normal(tf.shape(logvar_bxn))
    self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn

  def logp(self, z=None):
    """Compute the log-likelihood under the distribution.

    Args:
      z (optional): value to compute likelihood for, if None, use sample.

    Returns:
      The likelihood of z under the model.
    """
    if z is None:
      z = self.sample

    # This is needed to make sure that the gradients are simple.
    # The value of the function shouldn't change.
    if z == self.sample_bxn:
      return gaussian_pos_log_likelihood(self.mean_bxn, self.logvar_bxn,
                                         self.noise_bxn)

    return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)

  @property
  def mean(self):
    return self.mean_bxn

  @property
  def logvar(self):
    return self.logvar_bxn

  @property
  def sample(self):
    return self.sample_bxn


class DiagonalGaussianFromInput(Gaussian):
  """Diagonal Gaussian whose mean and variance are conditioned on other
  variables.

  Note: the parameters to convert from input to the learned mean and log
  variance are held in this class.
  """

  def __init__(self, x_bxu, z_size, name, var_min=0.0):
    """Create an input dependent diagonal Gaussian distribution.

    Args:
      x: The input tensor from which the mean and variance are computed,
        via a linear transformation of x.  I.e.
          mu = Wx + b, log(var) = Mx + c
      z_size: The size of the distribution.
      name:  The name to prefix to learned variables.
      var_min (optional): Minimal variance allowed.  This is an additional
        way to control the amount of information getting through the stochastic
        layer.
    """
    size_bxn = tf.stack([tf.shape(x_bxu)[0], z_size])
    self.mean_bxn = mean_bxn = linear(x_bxu, z_size, name=(name+"/mean"))
    logvar_bxn = linear(x_bxu, z_size, name=(name+"/logvar"))
    if var_min > 0.0:
      logvar_bxn = tf.log(tf.exp(logvar_bxn) + var_min)
    self.logvar_bxn = logvar_bxn

    self.noise_bxn = noise_bxn = tf.random_normal(size_bxn)
    self.noise_bxn.set_shape([None, z_size])
    self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn

  def logp(self, z=None):
    """Compute the log-likelihood under the distribution.

    Args:
      z (optional): value to compute likelihood for, if None, use sample.

    Returns:
      The likelihood of z under the model.
    """

    if z is None:
      z = self.sample

    # This is needed to make sure that the gradients are simple.
    # The value of the function shouldn't change.
    if z == self.sample_bxn:
      return gaussian_pos_log_likelihood(self.mean_bxn,
                                         self.logvar_bxn, self.noise_bxn)

    return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)

  @property
  def mean(self):
    return self.mean_bxn

  @property
  def logvar(self):
    return self.logvar_bxn

  @property
  def sample(self):
    return self.sample_bxn


class GaussianProcess:
  """Base class for Gaussian processes."""
  pass


class LearnableAutoRegressive1Prior(GaussianProcess):
  """AR(1) model where autocorrelation and process variance are learned
  parameters.  Assumed zero mean.

  """

  def __init__(self, batch_size, z_size,
               autocorrelation_taus, noise_variances,
               do_train_prior_ar_atau, do_train_prior_ar_nvar,
               num_steps, name):
    """Create a learnable autoregressive (1) process.

    Args:
      batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
      z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
      autocorrelation_taus: The auto correlation time constant of the AR(1)
      process.
        A value of 0 is uncorrelated gaussian noise.
      noise_variances: The variance of the additive noise, *not* the process
        variance.
      do_train_prior_ar_atau: Train or leave as constant, the autocorrelation?
      do_train_prior_ar_nvar: Train or leave as constant, the noise variance?
      num_steps: Number of steps to run the process.
      name: The name to prefix to learned TF variables.
    """

    # Note the use of the plural in all of these quantities.  This is intended
    # to mark that even though a sample z_t from the posterior is thought of a
    # single sample of a multidimensional gaussian, the prior is actually
    # thought of as U AR(1) processes, where U is the dimension of the inferred
    # input.
    size_bx1 = tf.stack([batch_size, 1])
    size__xu = [None, z_size]
    # process variance, the variance at time t over all instantiations of AR(1)
    # with these parameters.
    log_evar_inits_1xu = tf.expand_dims(tf.log(noise_variances), 0)
    self.logevars_1xu = logevars_1xu = \
        tf.Variable(log_evar_inits_1xu, name=name+"/logevars", dtype=tf.float32,
                    trainable=do_train_prior_ar_nvar)
    self.logevars_bxu = logevars_bxu = tf.tile(logevars_1xu, size_bx1)
    logevars_bxu.set_shape(size__xu) # tile loses shape

    # \tau, which is the autocorrelation time constant of the AR(1) process
    log_atau_inits_1xu = tf.expand_dims(tf.log(autocorrelation_taus), 0)
    self.logataus_1xu = logataus_1xu = \
        tf.Variable(log_atau_inits_1xu, name=name+"/logatau", dtype=tf.float32,
                    trainable=do_train_prior_ar_atau)

    # phi in x_t = \mu + phi x_tm1 + \eps
    # phi = exp(-1/tau)
    # phi = exp(-1/exp(logtau))
    # phi = exp(-exp(-logtau))
    phis_1xu = tf.exp(-tf.exp(-logataus_1xu))
    self.phis_bxu = phis_bxu = tf.tile(phis_1xu, size_bx1)
    phis_bxu.set_shape(size__xu)

    # process noise
    # pvar = evar / (1- phi^2)
    # logpvar = log ( exp(logevar) / (1 - phi^2) )
    # logpvar = logevar - log(1-phi^2)
    # logpvar = logevar - (log(1-phi) + log(1+phi))
    self.logpvars_1xu = \
        logevars_1xu - tf.log(1.0-phis_1xu) - tf.log(1.0+phis_1xu)
    self.logpvars_bxu = logpvars_bxu = tf.tile(self.logpvars_1xu, size_bx1)
    logpvars_bxu.set_shape(size__xu)

    # process mean (zero but included in for completeness)
    self.pmeans_bxu = pmeans_bxu = tf.zeros_like(phis_bxu)

    # For sampling from the prior during de-novo generation.
    self.means_t = means_t = [None] * num_steps
    self.logvars_t = logvars_t = [None] * num_steps
    self.samples_t = samples_t = [None] * num_steps
    self.gaussians_t = gaussians_t = [None] * num_steps
    sample_bxu = tf.zeros_like(phis_bxu)
    for t in range(num_steps):
      # process variance used here to make process completely stationary
      if t == 0:
        logvar_pt_bxu = self.logpvars_bxu
      else:
        logvar_pt_bxu = self.logevars_bxu

      z_mean_pt_bxu = pmeans_bxu + phis_bxu * sample_bxu
      gaussians_t[t] = DiagonalGaussian(batch_size, z_size,
                                        mean=z_mean_pt_bxu,
                                        logvar=logvar_pt_bxu)
      sample_bxu = gaussians_t[t].sample
      samples_t[t] = sample_bxu
      logvars_t[t] = logvar_pt_bxu
      means_t[t] = z_mean_pt_bxu

  def logp_t(self, z_t_bxu, z_tm1_bxu=None):
    """Compute the log-likelihood under the distribution for a given time t,
    not the whole sequence.

    Args:
      z_t_bxu: sample to compute likelihood for at time t.
      z_tm1_bxu (optional): sample condition probability of z_t upon.

    Returns:
      The likelihood of p_t under the model at time t. i.e.
        p(z_t|z_tm1_bxu) = N(z_tm1_bxu * phis, eps^2)

    """
    if z_tm1_bxu is None:
      return diag_gaussian_log_likelihood(z_t_bxu, self.pmeans_bxu,
                                          self.logpvars_bxu)
    else:
      means_t_bxu = self.pmeans_bxu + self.phis_bxu * z_tm1_bxu
      logp_tgtm1_bxu = diag_gaussian_log_likelihood(z_t_bxu,
                                                    means_t_bxu,
                                                    self.logevars_bxu)
      return logp_tgtm1_bxu


class KLCost_GaussianGaussian(object):
  """log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian prior. See
  eqn 10 and Appendix B in VAE for latter term,
  http://arxiv.org/abs/1312.6114

  The log p(x|z) term is the reconstruction error under the model.
  The KL term represents the penalty for passing information from the encoder
  to the decoder.
  To sample KL(q||p), we simply sample
        ln q - ln p
  by drawing samples from q and averaging.
  """

  def __init__(self, zs, prior_zs):
    """Create a lower bound in three parts, normalized reconstruction
    cost, normalized KL divergence cost, and their sum.

    E_q[ln p(z_i | z_{i+1}) / q(z_i | x)
       \int q(z) ln p(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_p^2) + \
          sigma_q^2 / sigma_p^2 + (mean_p - mean_q)^2 / sigma_p^2)

       \int q(z) ln q(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_q^2) + 1)

    Args:
      zs: posterior z ~ q(z|x)
      prior_zs: prior zs
    """
    # L = -KL + log p(x|z), to maximize bound on likelihood
    # -L = KL - log p(x|z), to minimize bound on NLL
    # so 'KL cost' is postive KL divergence
    kl_b = 0.0
    for z, prior_z in zip(zs, prior_zs):
      assert isinstance(z, Gaussian)
      assert isinstance(prior_z, Gaussian)
      # ln(2pi) terms cancel
      kl_b += 0.5 * tf.reduce_sum(
          prior_z.logvar - z.logvar
          + tf.exp(z.logvar - prior_z.logvar)
          + tf.square((z.mean - prior_z.mean) / tf.exp(0.5 * prior_z.logvar))
          - 1.0, [1])

    self.kl_cost_b = kl_b
    self.kl_cost = tf.reduce_mean(kl_b)


class KLCost_GaussianGaussianProcessSampled(object):
  """ log p(x|z) + KL(q||p) terms for Gaussian posterior and Gaussian process
  prior via sampling.

  The log p(x|z) term is the reconstruction error under the model.
  The KL term represents the penalty for passing information from the encoder
  to the decoder.
  To sample KL(q||p), we simply sample
        ln q - ln p
  by drawing samples from q and averaging.
  """

  def __init__(self, post_zs, prior_z_process):
    """Create a lower bound in three parts, normalized reconstruction
    cost, normalized KL divergence cost, and their sum.

    Args:
      post_zs: posterior z ~ q(z|x)
      prior_z_process: prior AR(1) process
    """
    assert len(post_zs) > 1, "GP is for time, need more than 1 time step."
    assert isinstance(prior_z_process, GaussianProcess), "Must use GP."

    # L = -KL + log p(x|z), to maximize bound on likelihood
    # -L = KL - log p(x|z), to minimize bound on NLL
    # so 'KL cost' is postive KL divergence
    z0_bxu = post_zs[0].sample
    logq_bxu = post_zs[0].logp(z0_bxu)
    logp_bxu = prior_z_process.logp_t(z0_bxu)
    z_tm1_bxu = z0_bxu
    for z_t in post_zs[1:]:
      # posterior is independent in time, prior is not
      z_t_bxu = z_t.sample
      logq_bxu += z_t.logp(z_t_bxu)
      logp_bxu += prior_z_process.logp_t(z_t_bxu, z_tm1_bxu)
      z_tm1_bxu = z_t_bxu

    kl_bxu = logq_bxu - logp_bxu
    kl_b = tf.reduce_sum(kl_bxu, [1])
    self.kl_cost_b = kl_b
    self.kl_cost = tf.reduce_mean(kl_b)