File size: 5,832 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import print_function

import os
import h5py
import numpy as np
from six.moves import xrange

from synthetic_data_utils import generate_data, generate_rnn
from synthetic_data_utils import get_train_n_valid_inds
from synthetic_data_utils import nparray_and_transpose
from synthetic_data_utils import spikify_data, split_list_by_inds
import tensorflow as tf
from utils import write_datasets

DATA_DIR = "rnn_synth_data_v1.0"

flags = tf.app.flags
flags.DEFINE_string("save_dir", "/tmp/" + DATA_DIR + "/",
                    "Directory for saving data.")
flags.DEFINE_string("datafile_name", "conditioned_rnn_data",
                    "Name of data file for input case.")
flags.DEFINE_integer("synth_data_seed", 5, "Random seed for RNN generation.")
flags.DEFINE_float("T", 1.0, "Time in seconds to generate.")
flags.DEFINE_integer("C", 400, "Number of conditions")
flags.DEFINE_integer("N", 50, "Number of units for the RNN")
flags.DEFINE_float("train_percentage", 4.0/5.0,
                   "Percentage of train vs validation trials")
flags.DEFINE_integer("nreplications", 10,
                     "Number of spikifications of the same underlying rates.")
flags.DEFINE_float("g", 1.5, "Complexity of dynamics")
flags.DEFINE_float("x0_std", 1.0,
                   "Volume from which to pull initial conditions (affects diversity of dynamics.")
flags.DEFINE_float("tau", 0.025, "Time constant of RNN")
flags.DEFINE_float("dt", 0.010, "Time bin")
flags.DEFINE_float("max_firing_rate", 30.0, "Map 1.0 of RNN to a spikes per second")
FLAGS = flags.FLAGS

rng = np.random.RandomState(seed=FLAGS.synth_data_seed)
rnn_rngs = [np.random.RandomState(seed=FLAGS.synth_data_seed+1),
            np.random.RandomState(seed=FLAGS.synth_data_seed+2)]
T = FLAGS.T
C = FLAGS.C
N = FLAGS.N
nreplications = FLAGS.nreplications
E = nreplications * C
train_percentage = FLAGS.train_percentage
ntimesteps = int(T / FLAGS.dt)

rnn_a = generate_rnn(rnn_rngs[0], N, FLAGS.g, FLAGS.tau, FLAGS.dt,
                     FLAGS.max_firing_rate)
rnn_b = generate_rnn(rnn_rngs[1], N, FLAGS.g, FLAGS.tau, FLAGS.dt,
                     FLAGS.max_firing_rate)
rnns = [rnn_a, rnn_b]

# pick which RNN is used on each trial
rnn_to_use = rng.randint(2, size=E)
ext_input = np.repeat(np.expand_dims(rnn_to_use, axis=1), ntimesteps, axis=1)
ext_input = np.expand_dims(ext_input, axis=2)  # these are "a's" in the paper

x0s = []
condition_labels = []
condition_number = 0
for c in range(C):
  x0 = FLAGS.x0_std * rng.randn(N, 1)
  x0s.append(np.tile(x0, nreplications))
  for ns in range(nreplications):
    condition_labels.append(condition_number)
  condition_number += 1
x0s = np.concatenate(x0s, axis=1)

P_nxn = rng.randn(N, N) / np.sqrt(N)

# generate trials for both RNNs
rates_a, x0s_a, _ = generate_data(rnn_a, T=T, E=E, x0s=x0s, P_sxn=P_nxn,
                                  input_magnitude=0.0, input_times=None)
spikes_a = spikify_data(rates_a, rng, rnn_a['dt'], rnn_a['max_firing_rate'])

rates_b, x0s_b, _ = generate_data(rnn_b, T=T, E=E, x0s=x0s, P_sxn=P_nxn,
                                  input_magnitude=0.0, input_times=None)
spikes_b = spikify_data(rates_b, rng, rnn_b['dt'], rnn_b['max_firing_rate'])

# not the best way to do this but E is small enough
rates = []
spikes = []
for trial in xrange(E):
  if rnn_to_use[trial] == 0:
    rates.append(rates_a[trial])
    spikes.append(spikes_a[trial])
  else:
    rates.append(rates_b[trial])
    spikes.append(spikes_b[trial])

# split into train and validation sets
train_inds, valid_inds = get_train_n_valid_inds(E, train_percentage,
                                                nreplications)

rates_train, rates_valid = split_list_by_inds(rates, train_inds, valid_inds)
spikes_train, spikes_valid = split_list_by_inds(spikes, train_inds, valid_inds)
condition_labels_train, condition_labels_valid = split_list_by_inds(
    condition_labels, train_inds, valid_inds)
ext_input_train, ext_input_valid = split_list_by_inds(
    ext_input, train_inds, valid_inds)

rates_train = nparray_and_transpose(rates_train)
rates_valid = nparray_and_transpose(rates_valid)
spikes_train = nparray_and_transpose(spikes_train)
spikes_valid = nparray_and_transpose(spikes_valid)

# add train_ext_input and valid_ext input
data = {'train_truth': rates_train,
        'valid_truth': rates_valid,
        'train_data' : spikes_train,
        'valid_data' : spikes_valid,
        'train_ext_input' : np.array(ext_input_train),
        'valid_ext_input': np.array(ext_input_valid),
        'train_percentage' : train_percentage,
        'nreplications' : nreplications,
        'dt' : FLAGS.dt,
        'P_sxn' : P_nxn,
        'condition_labels_train' : condition_labels_train,
        'condition_labels_valid' : condition_labels_valid,
        'conversion_factor': 1.0 / rnn_a['conversion_factor']}

# just one dataset here
datasets = {}
dataset_name = 'dataset_N' + str(N)
datasets[dataset_name] = data

# write out the dataset
write_datasets(FLAGS.save_dir, FLAGS.datafile_name, datasets)
print ('Saved to ', os.path.join(FLAGS.save_dir,
                                 FLAGS.datafile_name + '_' + dataset_name))