Spaces:
Running
Running
File size: 11,428 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Eval pre-trained 1 billion word language model.
"""
import os
import sys
import numpy as np
from six.moves import xrange
import tensorflow as tf
from google.protobuf import text_format
import data_utils
FLAGS = tf.flags.FLAGS
# General flags.
tf.flags.DEFINE_string('mode', 'eval',
'One of [sample, eval, dump_emb, dump_lstm_emb]. '
'"sample" mode samples future word predictions, using '
'FLAGS.prefix as prefix (prefix could be left empty). '
'"eval" mode calculates perplexity of the '
'FLAGS.input_data. '
'"dump_emb" mode dumps word and softmax embeddings to '
'FLAGS.save_dir. embeddings are dumped in the same '
'order as words in vocabulary. All words in vocabulary '
'are dumped.'
'dump_lstm_emb dumps lstm embeddings of FLAGS.sentence '
'to FLAGS.save_dir.')
tf.flags.DEFINE_string('pbtxt', '',
'GraphDef proto text file used to construct model '
'structure.')
tf.flags.DEFINE_string('ckpt', '',
'Checkpoint directory used to fill model values.')
tf.flags.DEFINE_string('vocab_file', '', 'Vocabulary file.')
tf.flags.DEFINE_string('save_dir', '',
'Used for "dump_emb" mode to save word embeddings.')
# sample mode flags.
tf.flags.DEFINE_string('prefix', '',
'Used for "sample" mode to predict next words.')
tf.flags.DEFINE_integer('max_sample_words', 100,
'Sampling stops either when </S> is met or this number '
'of steps has passed.')
tf.flags.DEFINE_integer('num_samples', 3,
'Number of samples to generate for the prefix.')
# dump_lstm_emb mode flags.
tf.flags.DEFINE_string('sentence', '',
'Used as input for "dump_lstm_emb" mode.')
# eval mode flags.
tf.flags.DEFINE_string('input_data', '',
'Input data files for eval model.')
tf.flags.DEFINE_integer('max_eval_steps', 1000000,
'Maximum mumber of steps to run "eval" mode.')
# For saving demo resources, use batch size 1 and step 1.
BATCH_SIZE = 1
NUM_TIMESTEPS = 1
MAX_WORD_LEN = 50
def _LoadModel(gd_file, ckpt_file):
"""Load the model from GraphDef and Checkpoint.
Args:
gd_file: GraphDef proto text file.
ckpt_file: TensorFlow Checkpoint file.
Returns:
TensorFlow session and tensors dict.
"""
with tf.Graph().as_default():
sys.stderr.write('Recovering graph.\n')
with tf.gfile.FastGFile(gd_file, 'r') as f:
s = f.read().decode()
gd = tf.GraphDef()
text_format.Merge(s, gd)
tf.logging.info('Recovering Graph %s', gd_file)
t = {}
[t['states_init'], t['lstm/lstm_0/control_dependency'],
t['lstm/lstm_1/control_dependency'], t['softmax_out'], t['class_ids_out'],
t['class_weights_out'], t['log_perplexity_out'], t['inputs_in'],
t['targets_in'], t['target_weights_in'], t['char_inputs_in'],
t['all_embs'], t['softmax_weights'], t['global_step']
] = tf.import_graph_def(gd, {}, ['states_init',
'lstm/lstm_0/control_dependency:0',
'lstm/lstm_1/control_dependency:0',
'softmax_out:0',
'class_ids_out:0',
'class_weights_out:0',
'log_perplexity_out:0',
'inputs_in:0',
'targets_in:0',
'target_weights_in:0',
'char_inputs_in:0',
'all_embs_out:0',
'Reshape_3:0',
'global_step:0'], name='')
sys.stderr.write('Recovering checkpoint %s\n' % ckpt_file)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run('save/restore_all', {'save/Const:0': ckpt_file})
sess.run(t['states_init'])
return sess, t
def _EvalModel(dataset):
"""Evaluate model perplexity using provided dataset.
Args:
dataset: LM1BDataset object.
"""
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
current_step = t['global_step'].eval(session=sess)
sys.stderr.write('Loaded step %d.\n' % current_step)
data_gen = dataset.get_batch(BATCH_SIZE, NUM_TIMESTEPS, forever=False)
sum_num = 0.0
sum_den = 0.0
perplexity = 0.0
for i, (inputs, char_inputs, _, targets, weights) in enumerate(data_gen):
input_dict = {t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights}
if 'char_inputs_in' in t:
input_dict[t['char_inputs_in']] = char_inputs
log_perp = sess.run(t['log_perplexity_out'], feed_dict=input_dict)
if np.isnan(log_perp):
sys.stderr.error('log_perplexity is Nan.\n')
else:
sum_num += log_perp * weights.mean()
sum_den += weights.mean()
if sum_den > 0:
perplexity = np.exp(sum_num / sum_den)
sys.stderr.write('Eval Step: %d, Average Perplexity: %f.\n' %
(i, perplexity))
if i > FLAGS.max_eval_steps:
break
def _SampleSoftmax(softmax):
return min(np.sum(np.cumsum(softmax) < np.random.rand()), len(softmax) - 1)
def _SampleModel(prefix_words, vocab):
"""Predict next words using the given prefix words.
Args:
prefix_words: Prefix words.
vocab: Vocabulary. Contains max word chard id length and converts between
words and ids.
"""
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
if prefix_words.find('<S>') != 0:
prefix_words = '<S> ' + prefix_words
prefix = [vocab.word_to_id(w) for w in prefix_words.split()]
prefix_char_ids = [vocab.word_to_char_ids(w) for w in prefix_words.split()]
for _ in xrange(FLAGS.num_samples):
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
char_ids_inputs = np.zeros(
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
samples = prefix[:]
char_ids_samples = prefix_char_ids[:]
sent = ''
while True:
inputs[0, 0] = samples[0]
char_ids_inputs[0, 0, :] = char_ids_samples[0]
samples = samples[1:]
char_ids_samples = char_ids_samples[1:]
softmax = sess.run(t['softmax_out'],
feed_dict={t['char_inputs_in']: char_ids_inputs,
t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights})
sample = _SampleSoftmax(softmax[0])
sample_char_ids = vocab.word_to_char_ids(vocab.id_to_word(sample))
if not samples:
samples = [sample]
char_ids_samples = [sample_char_ids]
sent += vocab.id_to_word(samples[0]) + ' '
sys.stderr.write('%s\n' % sent)
if (vocab.id_to_word(samples[0]) == '</S>' or
len(sent) > FLAGS.max_sample_words):
break
def _DumpEmb(vocab):
"""Dump the softmax weights and word embeddings to files.
Args:
vocab: Vocabulary. Contains vocabulary size and converts word to ids.
"""
assert FLAGS.save_dir, 'Must specify FLAGS.save_dir for dump_emb.'
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
softmax_weights = sess.run(t['softmax_weights'])
fname = FLAGS.save_dir + '/embeddings_softmax.npy'
with tf.gfile.Open(fname, mode='w') as f:
np.save(f, softmax_weights)
sys.stderr.write('Finished softmax weights\n')
all_embs = np.zeros([vocab.size, 1024])
for i in xrange(vocab.size):
input_dict = {t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights}
if 'char_inputs_in' in t:
input_dict[t['char_inputs_in']] = (
vocab.word_char_ids[i].reshape([-1, 1, MAX_WORD_LEN]))
embs = sess.run(t['all_embs'], input_dict)
all_embs[i, :] = embs
sys.stderr.write('Finished word embedding %d/%d\n' % (i, vocab.size))
fname = FLAGS.save_dir + '/embeddings_char_cnn.npy'
with tf.gfile.Open(fname, mode='w') as f:
np.save(f, all_embs)
sys.stderr.write('Embedding file saved\n')
def _DumpSentenceEmbedding(sentence, vocab):
"""Predict next words using the given prefix words.
Args:
sentence: Sentence words.
vocab: Vocabulary. Contains max word chard id length and converts between
words and ids.
"""
targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
if sentence.find('<S>') != 0:
sentence = '<S> ' + sentence
word_ids = [vocab.word_to_id(w) for w in sentence.split()]
char_ids = [vocab.word_to_char_ids(w) for w in sentence.split()]
inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
char_ids_inputs = np.zeros(
[BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
for i in xrange(len(word_ids)):
inputs[0, 0] = word_ids[i]
char_ids_inputs[0, 0, :] = char_ids[i]
# Add 'lstm/lstm_0/control_dependency' if you want to dump previous layer
# LSTM.
lstm_emb = sess.run(t['lstm/lstm_1/control_dependency'],
feed_dict={t['char_inputs_in']: char_ids_inputs,
t['inputs_in']: inputs,
t['targets_in']: targets,
t['target_weights_in']: weights})
fname = os.path.join(FLAGS.save_dir, 'lstm_emb_step_%d.npy' % i)
with tf.gfile.Open(fname, mode='w') as f:
np.save(f, lstm_emb)
sys.stderr.write('LSTM embedding step %d file saved\n' % i)
def main(unused_argv):
vocab = data_utils.CharsVocabulary(FLAGS.vocab_file, MAX_WORD_LEN)
if FLAGS.mode == 'eval':
dataset = data_utils.LM1BDataset(FLAGS.input_data, vocab)
_EvalModel(dataset)
elif FLAGS.mode == 'sample':
_SampleModel(FLAGS.prefix, vocab)
elif FLAGS.mode == 'dump_emb':
_DumpEmb(vocab)
elif FLAGS.mode == 'dump_lstm_emb':
_DumpSentenceEmbedding(FLAGS.sentence, vocab)
else:
raise Exception('Mode not supported.')
if __name__ == '__main__':
tf.app.run()
|