File size: 11,148 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import numpy as np
import tensorflow as tf

FLAGS = tf.flags.FLAGS


class Vocabulary(object):
  """Class that holds a vocabulary for the dataset."""

  def __init__(self, filename):

    self._id_to_word = []
    self._word_to_id = {}
    self._unk = -1
    self._bos = -1
    self._eos = -1

    with tf.gfile.Open(filename) as f:
      idx = 0
      for line in f:
        word_name = line.strip()
        if word_name == '<S>':
          self._bos = idx
        elif word_name == '</S>':
          self._eos = idx
        elif word_name == '<UNK>':
          self._unk = idx
        if word_name == '!!!MAXTERMID':
          continue

        self._id_to_word.append(word_name)
        self._word_to_id[word_name] = idx
        idx += 1

  @property
  def bos(self):
    return self._bos

  @property
  def eos(self):
    return self._eos

  @property
  def unk(self):
    return self._unk

  @property
  def size(self):
    return len(self._id_to_word)

  def word_to_id(self, word):
    if word in self._word_to_id:
      return self._word_to_id[word]
    else:
      if word.lower() in self._word_to_id:
        return self._word_to_id[word.lower()]
    return self.unk

  def id_to_word(self, cur_id):
    if cur_id < self.size:
      return self._id_to_word[int(cur_id)]
    return '<ERROR_out_of_vocab_id>'

  def decode(self, cur_ids):
    return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids])

  def encode(self, sentence):
    word_ids = [self.word_to_id(cur_word) for cur_word in sentence.split()]
    return np.array([self.bos] + word_ids + [self.eos], dtype=np.int32)


class CharsVocabulary(Vocabulary):
  """Vocabulary containing character-level information."""

  def __init__(self, filename, max_word_length):
    super(CharsVocabulary, self).__init__(filename)

    self._max_word_length = max_word_length
    chars_set = set()

    for word in self._id_to_word:
      chars_set |= set(word)

    free_ids = []
    for i in range(256):
      if chr(i) in chars_set:
        continue
      free_ids.append(chr(i))

    if len(free_ids) < 5:
      raise ValueError('Not enough free char ids: %d' % len(free_ids))

    self.bos_char = free_ids[0]  # <begin sentence>
    self.eos_char = free_ids[1]  # <end sentence>
    self.bow_char = free_ids[2]  # <begin word>
    self.eow_char = free_ids[3]  # <end word>
    self.pad_char = free_ids[4]  # <padding>

    chars_set |= {self.bos_char, self.eos_char, self.bow_char, self.eow_char,
                  self.pad_char}

    self._char_set = chars_set
    num_words = len(self._id_to_word)

    self._word_char_ids = np.zeros([num_words, max_word_length], dtype=np.int32)

    self.bos_chars = self._convert_word_to_char_ids(self.bos_char)
    self.eos_chars = self._convert_word_to_char_ids(self.eos_char)

    for i, word in enumerate(self._id_to_word):
      if i == self.bos:
        self._word_char_ids[i] = self.bos_chars
      elif i == self.eos:
        self._word_char_ids[i] = self.eos_chars
      else:
        self._word_char_ids[i] = self._convert_word_to_char_ids(word)

  @property
  def max_word_length(self):
    return self._max_word_length

  def _convert_word_to_char_ids(self, word):
    code = np.zeros([self.max_word_length], dtype=np.int32)
    code[:] = ord(self.pad_char)

    if len(word) > self.max_word_length - 2:
      word = word[:self.max_word_length-2]
    cur_word = self.bow_char + word + self.eow_char
    for j in range(len(cur_word)):
      code[j] = ord(cur_word[j])
    return code

  def word_to_char_ids(self, word):
    if word in self._word_to_id:
      return self._word_char_ids[self._word_to_id[word]]
    else:
      return self._convert_word_to_char_ids(word)

  def encode_chars(self, sentence):
    chars_ids = [self.word_to_char_ids(cur_word)
                 for cur_word in sentence.split()]
    return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars])


_SPECIAL_CHAR_MAP = {
    '\xe2\x80\x98': '\'',
    '\xe2\x80\x99': '\'',
    '\xe2\x80\x9c': '"',
    '\xe2\x80\x9d': '"',
    '\xe2\x80\x93': '-',
    '\xe2\x80\x94': '-',
    '\xe2\x88\x92': '-',
    '\xce\x84': '\'',
    '\xc2\xb4': '\'',
    '`': '\''
}

_START_SPECIAL_CHARS = ['.', ',', '?', '!', ';', ':', '[', ']', '\'', '+', '/',
                        '\xc2\xa3', '$', '~', '*', '%', '{', '}', '#', '&', '-',
                        '"', '(', ')', '='] + list(_SPECIAL_CHAR_MAP.keys())
_SPECIAL_CHARS = _START_SPECIAL_CHARS + [
    '\'s', '\'m', '\'t', '\'re', '\'d', '\'ve', '\'ll']


def tokenize(sentence):
  """Tokenize a sentence."""
  sentence = str(sentence)
  words = sentence.strip().split()
  tokenized = []  # return this

  for word in words:
    if word.lower() in ['mr.', 'ms.']:
      tokenized.append(word)
      continue

    # Split special chars at the start of word
    will_split = True
    while will_split:
      will_split = False
      for char in _START_SPECIAL_CHARS:
        if word.startswith(char):
          tokenized.append(char)
          word = word[len(char):]
          will_split = True

    # Split special chars at the end of word
    special_end_tokens = []
    will_split = True
    while will_split:
      will_split = False
      for char in _SPECIAL_CHARS:
        if word.endswith(char):
          special_end_tokens = [char] + special_end_tokens
          word = word[:-len(char)]
          will_split = True

    if word:
      tokenized.append(word)
    tokenized += special_end_tokens

  # Add necessary end of sentence token.
  if tokenized[-1] not in ['.', '!', '?']:
    tokenized += ['.']
  return tokenized


def parse_commonsense_reasoning_test(test_data_name):
  """Read JSON test data."""
  with tf.gfile.Open(os.path.join(
      FLAGS.data_dir, 'commonsense_test',
      '{}.json'.format(test_data_name)), 'r') as f:
    data = json.load(f)

  question_ids = [d['question_id'] for d in data]
  sentences = [tokenize(d['substitution']) for d in data]
  labels = [d['correctness'] for d in data]

  return question_ids, sentences, labels


PAD = '<padding>'


def cut_to_patches(sentences, batch_size, num_timesteps):
  """Cut sentences into patches of shape (batch_size, num_timesteps).

  Args:
    sentences: a list of sentences, each sentence is a list of str token.
    batch_size: batch size
    num_timesteps: number of backprop step

  Returns:
    patches: A 2D matrix,
      each entry is a matrix of shape (batch_size, num_timesteps).
  """
  preprocessed = [['<S>']+sentence+['</S>'] for sentence in sentences]
  max_len = max([len(sent) for sent in preprocessed])

  # Pad to shape [height, width]
  # where height is a multiple of batch_size
  # and width is a multiple of num_timesteps
  nrow = int(np.ceil(len(preprocessed) * 1.0 / batch_size))
  ncol = int(np.ceil(max_len * 1.0 / num_timesteps))
  height, width = nrow * batch_size, ncol * num_timesteps + 1
  preprocessed = [sent + [PAD] * (width - len(sent)) for sent in preprocessed]
  preprocessed += [[PAD] * width] * (height - len(preprocessed))

  # Cut preprocessed into patches of shape [batch_size, num_timesteps]
  patches = []
  for row in range(nrow):
    patches.append([])
    for col in range(ncol):
      patch = [sent[col * num_timesteps:
                    (col+1) * num_timesteps + 1]
               for sent in preprocessed[row * batch_size:
                                        (row+1) * batch_size]]
      if np.all(np.array(patch)[:, 1:] == PAD):
        patch = None  # no need to process this patch.
      patches[-1].append(patch)
  return patches


def _substitution_mask(sent1, sent2):
  """Binary mask identifying substituted part in two sentences.

  Example sentence and their mask:
    First sentence  = "I like the cat        's color"
                       0 0    0   1           0 0
    Second sentence = "I like the yellow dog 's color"
                       0 0    0   1      1    0 0

  Args:
    sent1: first sentence
    sent2: second sentence

  Returns:
    mask1: mask for first sentence
    mask2: mask for second sentence
  """
  mask1_start, mask2_start = [], []
  while sent1[0] == sent2[0]:
    sent1 = sent1[1:]
    sent2 = sent2[1:]
    mask1_start.append(0.)
    mask2_start.append(0.)

  mask1_end, mask2_end = [], []
  while sent1[-1] == sent2[-1]:
    if (len(sent1) == 1) or (len(sent2) == 1):
      break
    sent1 = sent1[:-1]
    sent2 = sent2[:-1]
    mask1_end = [0.] + mask1_end
    mask2_end = [0.] + mask2_end

  assert sent1 or sent2, 'Two sentences are identical.'
  return (mask1_start + [1.] * len(sent1) + mask1_end,
          mask2_start + [1.] * len(sent2) + mask2_end)


def _convert_to_partial(scoring1, scoring2):
  """Convert full scoring into partial scoring."""
  mask1, mask2 = _substitution_mask(
      scoring1['sentence'], scoring2['sentence'])

  def _partial_score(scoring, mask):
    word_probs = [max(_) for _ in zip(scoring['word_probs'], mask)]
    scoring.update(word_probs=word_probs,
                   joint_prob=np.prod(word_probs))

  _partial_score(scoring1, mask1)
  _partial_score(scoring2, mask2)


def compare_substitutions(question_ids, scorings, mode='full'):
  """Return accuracy by comparing two consecutive scorings."""
  prediction_correctness = []
  # Compare two consecutive substitutions
  for i in range(len(scorings) // 2):
    scoring1, scoring2 = scorings[2*i: 2*i+2]
    if mode == 'partial':  # fix joint prob into partial prob
      _convert_to_partial(scoring1, scoring2)

    prediction_correctness.append(
        (scoring2['joint_prob'] > scoring1['joint_prob']) ==
         scoring2['correctness'])

  # Two consecutive substitutions always belong to the same question
  question_ids = [qid for i, qid in enumerate(question_ids) if i % 2 == 0]
  assert len(question_ids) == len(prediction_correctness)
  num_questions = len(set(question_ids))

  # Question is correctly answered only if
  # all predictions of the same question_id is correct
  num_correct_answer = 0
  previous_qid = None
  correctly_answered = False
  for predict, qid in zip(prediction_correctness, question_ids):
    if qid != previous_qid:
      previous_qid = qid
      num_correct_answer += int(correctly_answered)
      correctly_answered = True
    correctly_answered = correctly_answered and predict
  num_correct_answer += int(correctly_answered)

  return num_correct_answer / num_questions