Spaces:
Sleeping
Sleeping
File size: 11,148 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import numpy as np
import tensorflow as tf
FLAGS = tf.flags.FLAGS
class Vocabulary(object):
"""Class that holds a vocabulary for the dataset."""
def __init__(self, filename):
self._id_to_word = []
self._word_to_id = {}
self._unk = -1
self._bos = -1
self._eos = -1
with tf.gfile.Open(filename) as f:
idx = 0
for line in f:
word_name = line.strip()
if word_name == '<S>':
self._bos = idx
elif word_name == '</S>':
self._eos = idx
elif word_name == '<UNK>':
self._unk = idx
if word_name == '!!!MAXTERMID':
continue
self._id_to_word.append(word_name)
self._word_to_id[word_name] = idx
idx += 1
@property
def bos(self):
return self._bos
@property
def eos(self):
return self._eos
@property
def unk(self):
return self._unk
@property
def size(self):
return len(self._id_to_word)
def word_to_id(self, word):
if word in self._word_to_id:
return self._word_to_id[word]
else:
if word.lower() in self._word_to_id:
return self._word_to_id[word.lower()]
return self.unk
def id_to_word(self, cur_id):
if cur_id < self.size:
return self._id_to_word[int(cur_id)]
return '<ERROR_out_of_vocab_id>'
def decode(self, cur_ids):
return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids])
def encode(self, sentence):
word_ids = [self.word_to_id(cur_word) for cur_word in sentence.split()]
return np.array([self.bos] + word_ids + [self.eos], dtype=np.int32)
class CharsVocabulary(Vocabulary):
"""Vocabulary containing character-level information."""
def __init__(self, filename, max_word_length):
super(CharsVocabulary, self).__init__(filename)
self._max_word_length = max_word_length
chars_set = set()
for word in self._id_to_word:
chars_set |= set(word)
free_ids = []
for i in range(256):
if chr(i) in chars_set:
continue
free_ids.append(chr(i))
if len(free_ids) < 5:
raise ValueError('Not enough free char ids: %d' % len(free_ids))
self.bos_char = free_ids[0] # <begin sentence>
self.eos_char = free_ids[1] # <end sentence>
self.bow_char = free_ids[2] # <begin word>
self.eow_char = free_ids[3] # <end word>
self.pad_char = free_ids[4] # <padding>
chars_set |= {self.bos_char, self.eos_char, self.bow_char, self.eow_char,
self.pad_char}
self._char_set = chars_set
num_words = len(self._id_to_word)
self._word_char_ids = np.zeros([num_words, max_word_length], dtype=np.int32)
self.bos_chars = self._convert_word_to_char_ids(self.bos_char)
self.eos_chars = self._convert_word_to_char_ids(self.eos_char)
for i, word in enumerate(self._id_to_word):
if i == self.bos:
self._word_char_ids[i] = self.bos_chars
elif i == self.eos:
self._word_char_ids[i] = self.eos_chars
else:
self._word_char_ids[i] = self._convert_word_to_char_ids(word)
@property
def max_word_length(self):
return self._max_word_length
def _convert_word_to_char_ids(self, word):
code = np.zeros([self.max_word_length], dtype=np.int32)
code[:] = ord(self.pad_char)
if len(word) > self.max_word_length - 2:
word = word[:self.max_word_length-2]
cur_word = self.bow_char + word + self.eow_char
for j in range(len(cur_word)):
code[j] = ord(cur_word[j])
return code
def word_to_char_ids(self, word):
if word in self._word_to_id:
return self._word_char_ids[self._word_to_id[word]]
else:
return self._convert_word_to_char_ids(word)
def encode_chars(self, sentence):
chars_ids = [self.word_to_char_ids(cur_word)
for cur_word in sentence.split()]
return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars])
_SPECIAL_CHAR_MAP = {
'\xe2\x80\x98': '\'',
'\xe2\x80\x99': '\'',
'\xe2\x80\x9c': '"',
'\xe2\x80\x9d': '"',
'\xe2\x80\x93': '-',
'\xe2\x80\x94': '-',
'\xe2\x88\x92': '-',
'\xce\x84': '\'',
'\xc2\xb4': '\'',
'`': '\''
}
_START_SPECIAL_CHARS = ['.', ',', '?', '!', ';', ':', '[', ']', '\'', '+', '/',
'\xc2\xa3', '$', '~', '*', '%', '{', '}', '#', '&', '-',
'"', '(', ')', '='] + list(_SPECIAL_CHAR_MAP.keys())
_SPECIAL_CHARS = _START_SPECIAL_CHARS + [
'\'s', '\'m', '\'t', '\'re', '\'d', '\'ve', '\'ll']
def tokenize(sentence):
"""Tokenize a sentence."""
sentence = str(sentence)
words = sentence.strip().split()
tokenized = [] # return this
for word in words:
if word.lower() in ['mr.', 'ms.']:
tokenized.append(word)
continue
# Split special chars at the start of word
will_split = True
while will_split:
will_split = False
for char in _START_SPECIAL_CHARS:
if word.startswith(char):
tokenized.append(char)
word = word[len(char):]
will_split = True
# Split special chars at the end of word
special_end_tokens = []
will_split = True
while will_split:
will_split = False
for char in _SPECIAL_CHARS:
if word.endswith(char):
special_end_tokens = [char] + special_end_tokens
word = word[:-len(char)]
will_split = True
if word:
tokenized.append(word)
tokenized += special_end_tokens
# Add necessary end of sentence token.
if tokenized[-1] not in ['.', '!', '?']:
tokenized += ['.']
return tokenized
def parse_commonsense_reasoning_test(test_data_name):
"""Read JSON test data."""
with tf.gfile.Open(os.path.join(
FLAGS.data_dir, 'commonsense_test',
'{}.json'.format(test_data_name)), 'r') as f:
data = json.load(f)
question_ids = [d['question_id'] for d in data]
sentences = [tokenize(d['substitution']) for d in data]
labels = [d['correctness'] for d in data]
return question_ids, sentences, labels
PAD = '<padding>'
def cut_to_patches(sentences, batch_size, num_timesteps):
"""Cut sentences into patches of shape (batch_size, num_timesteps).
Args:
sentences: a list of sentences, each sentence is a list of str token.
batch_size: batch size
num_timesteps: number of backprop step
Returns:
patches: A 2D matrix,
each entry is a matrix of shape (batch_size, num_timesteps).
"""
preprocessed = [['<S>']+sentence+['</S>'] for sentence in sentences]
max_len = max([len(sent) for sent in preprocessed])
# Pad to shape [height, width]
# where height is a multiple of batch_size
# and width is a multiple of num_timesteps
nrow = int(np.ceil(len(preprocessed) * 1.0 / batch_size))
ncol = int(np.ceil(max_len * 1.0 / num_timesteps))
height, width = nrow * batch_size, ncol * num_timesteps + 1
preprocessed = [sent + [PAD] * (width - len(sent)) for sent in preprocessed]
preprocessed += [[PAD] * width] * (height - len(preprocessed))
# Cut preprocessed into patches of shape [batch_size, num_timesteps]
patches = []
for row in range(nrow):
patches.append([])
for col in range(ncol):
patch = [sent[col * num_timesteps:
(col+1) * num_timesteps + 1]
for sent in preprocessed[row * batch_size:
(row+1) * batch_size]]
if np.all(np.array(patch)[:, 1:] == PAD):
patch = None # no need to process this patch.
patches[-1].append(patch)
return patches
def _substitution_mask(sent1, sent2):
"""Binary mask identifying substituted part in two sentences.
Example sentence and their mask:
First sentence = "I like the cat 's color"
0 0 0 1 0 0
Second sentence = "I like the yellow dog 's color"
0 0 0 1 1 0 0
Args:
sent1: first sentence
sent2: second sentence
Returns:
mask1: mask for first sentence
mask2: mask for second sentence
"""
mask1_start, mask2_start = [], []
while sent1[0] == sent2[0]:
sent1 = sent1[1:]
sent2 = sent2[1:]
mask1_start.append(0.)
mask2_start.append(0.)
mask1_end, mask2_end = [], []
while sent1[-1] == sent2[-1]:
if (len(sent1) == 1) or (len(sent2) == 1):
break
sent1 = sent1[:-1]
sent2 = sent2[:-1]
mask1_end = [0.] + mask1_end
mask2_end = [0.] + mask2_end
assert sent1 or sent2, 'Two sentences are identical.'
return (mask1_start + [1.] * len(sent1) + mask1_end,
mask2_start + [1.] * len(sent2) + mask2_end)
def _convert_to_partial(scoring1, scoring2):
"""Convert full scoring into partial scoring."""
mask1, mask2 = _substitution_mask(
scoring1['sentence'], scoring2['sentence'])
def _partial_score(scoring, mask):
word_probs = [max(_) for _ in zip(scoring['word_probs'], mask)]
scoring.update(word_probs=word_probs,
joint_prob=np.prod(word_probs))
_partial_score(scoring1, mask1)
_partial_score(scoring2, mask2)
def compare_substitutions(question_ids, scorings, mode='full'):
"""Return accuracy by comparing two consecutive scorings."""
prediction_correctness = []
# Compare two consecutive substitutions
for i in range(len(scorings) // 2):
scoring1, scoring2 = scorings[2*i: 2*i+2]
if mode == 'partial': # fix joint prob into partial prob
_convert_to_partial(scoring1, scoring2)
prediction_correctness.append(
(scoring2['joint_prob'] > scoring1['joint_prob']) ==
scoring2['correctness'])
# Two consecutive substitutions always belong to the same question
question_ids = [qid for i, qid in enumerate(question_ids) if i % 2 == 0]
assert len(question_ids) == len(prediction_correctness)
num_questions = len(set(question_ids))
# Question is correctly answered only if
# all predictions of the same question_id is correct
num_correct_answer = 0
previous_qid = None
correctly_answered = False
for predict, qid in zip(prediction_correctness, question_ids):
if qid != previous_qid:
previous_qid = qid
num_correct_answer += int(correctly_answered)
correctly_answered = True
correctly_answered = correctly_answered and predict
num_correct_answer += int(correctly_answered)
return num_correct_answer / num_questions
|