Spaces:
Running
Running
File size: 9,452 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generate samples from the MaskGAN.
Launch command:
python generate_samples.py
--data_dir=/tmp/data/imdb --data_set=imdb
--batch_size=256 --sequence_length=20 --base_directory=/tmp/imdb
--hparams="gen_rnn_size=650,dis_rnn_size=650,gen_num_layers=2,
gen_vd_keep_prob=1.0" --generator_model=seq2seq_vd
--discriminator_model=seq2seq_vd --is_present_rate=0.5
--maskgan_ckpt=/tmp/model.ckpt-45494
--seq2seq_share_embedding=True --dis_share_embedding=True
--attention_option=luong --mask_strategy=contiguous --baseline_method=critic
--number_epochs=4
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import os
# Dependency imports
import numpy as np
from six.moves import xrange
import tensorflow as tf
import train_mask_gan
from data import imdb_loader
from data import ptb_loader
# Data.
from model_utils import helper
from model_utils import model_utils
SAMPLE_TRAIN = 'TRAIN'
SAMPLE_VALIDATION = 'VALIDATION'
## Sample Generation.
## Binary and setup FLAGS.
tf.app.flags.DEFINE_enum('sample_mode', 'TRAIN',
[SAMPLE_TRAIN, SAMPLE_VALIDATION],
'Dataset to sample from.')
tf.app.flags.DEFINE_string('output_path', '/tmp', 'Model output directory.')
tf.app.flags.DEFINE_boolean(
'output_masked_logs', False,
'Whether to display for human evaluation (show masking).')
tf.app.flags.DEFINE_integer('number_epochs', 1,
'The number of epochs to produce.')
FLAGS = tf.app.flags.FLAGS
def get_iterator(data):
"""Return the data iterator."""
if FLAGS.data_set == 'ptb':
iterator = ptb_loader.ptb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length,
FLAGS.epoch_size_override)
elif FLAGS.data_set == 'imdb':
iterator = imdb_loader.imdb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length)
return iterator
def convert_to_human_readable(id_to_word, arr, p, max_num_to_print):
"""Convert a np.array of indices into words using id_to_word dictionary.
Return max_num_to_print results.
"""
assert arr.ndim == 2
samples = []
for sequence_id in xrange(min(len(arr), max_num_to_print)):
sample = []
for i, index in enumerate(arr[sequence_id, :]):
if p[sequence_id, i] == 1:
sample.append(str(id_to_word[index]))
else:
sample.append('*' + str(id_to_word[index]))
buffer_str = ' '.join(sample)
samples.append(buffer_str)
return samples
def write_unmasked_log(log, id_to_word, sequence_eval):
"""Helper function for logging evaluated sequences without mask."""
indices_arr = np.asarray(sequence_eval)
samples = helper.convert_to_human_readable(id_to_word, indices_arr,
FLAGS.batch_size)
for sample in samples:
log.write(sample + '\n')
log.flush()
return samples
def write_masked_log(log, id_to_word, sequence_eval, present_eval):
indices_arr = np.asarray(sequence_eval)
samples = convert_to_human_readable(id_to_word, indices_arr, present_eval,
FLAGS.batch_size)
for sample in samples:
log.write(sample + '\n')
log.flush()
return samples
def generate_logs(sess, model, log, id_to_word, feed):
"""Impute Sequences using the model for a particular feed and send it to
logs.
"""
# Impute Sequences.
[p, inputs_eval, sequence_eval] = sess.run(
[model.present, model.inputs, model.fake_sequence], feed_dict=feed)
# Add the 0th time-step for coherence.
first_token = np.expand_dims(inputs_eval[:, 0], axis=1)
sequence_eval = np.concatenate((first_token, sequence_eval), axis=1)
# 0th token always present.
p = np.concatenate((np.ones((FLAGS.batch_size, 1)), p), axis=1)
if FLAGS.output_masked_logs:
samples = write_masked_log(log, id_to_word, sequence_eval, p)
else:
samples = write_unmasked_log(log, id_to_word, sequence_eval)
return samples
def generate_samples(hparams, data, id_to_word, log_dir, output_file):
""""Generate samples.
Args:
hparams: Hyperparameters for the MaskGAN.
data: Data to evaluate.
id_to_word: Dictionary of indices to words.
log_dir: Log directory.
output_file: Output file for the samples.
"""
# Boolean indicating operational mode.
is_training = False
# Set a random seed to keep fixed mask.
np.random.seed(0)
with tf.Graph().as_default():
# Construct the model.
model = train_mask_gan.create_MaskGAN(hparams, is_training)
## Retrieve the initial savers.
init_savers = model_utils.retrieve_init_savers(hparams)
## Initial saver function to supervisor.
init_fn = partial(model_utils.init_fn, init_savers)
is_chief = FLAGS.task == 0
# Create the supervisor. It will take care of initialization, summaries,
# checkpoints, and recovery.
sv = tf.Supervisor(
logdir=log_dir,
is_chief=is_chief,
saver=model.saver,
global_step=model.global_step,
recovery_wait_secs=30,
summary_op=None,
init_fn=init_fn)
# Get an initialized, and possibly recovered session. Launch the
# services: Checkpointing, Summaries, step counting.
#
# When multiple replicas of this program are running the services are
# only launched by the 'chief' replica.
with sv.managed_session(
FLAGS.master, start_standard_services=False) as sess:
# Generator statefulness over the epoch.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_initial_state, model.fake_gen_initial_state])
for n in xrange(FLAGS.number_epochs):
print('Epoch number: %d' % n)
# print('Percent done: %.2f' % float(n) / float(FLAGS.number_epochs))
iterator = get_iterator(data)
for x, y, _ in iterator:
if FLAGS.eval_language_model:
is_present_rate = 0.
else:
is_present_rate = FLAGS.is_present_rate
tf.logging.info(
'Evaluating on is_present_rate=%.3f.' % is_present_rate)
model_utils.assign_percent_real(sess, model.percent_real_update,
model.new_rate, is_present_rate)
# Randomly mask out tokens.
p = model_utils.generate_mask()
eval_feed = {model.inputs: x, model.targets: y, model.present: p}
if FLAGS.data_set == 'ptb':
# Statefulness for *evaluation* Generator.
for i, (c, h) in enumerate(model.eval_initial_state):
eval_feed[c] = gen_initial_state_eval[i].c
eval_feed[h] = gen_initial_state_eval[i].h
# Statefulness for the Generator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
eval_feed[c] = fake_gen_initial_state_eval[i].c
eval_feed[h] = fake_gen_initial_state_eval[i].h
[gen_initial_state_eval, fake_gen_initial_state_eval, _] = sess.run(
[
model.eval_final_state, model.fake_gen_final_state,
model.global_step
],
feed_dict=eval_feed)
generate_logs(sess, model, output_file, id_to_word, eval_feed)
output_file.close()
print('Closing output_file.')
return
def main(_):
hparams = train_mask_gan.create_hparams()
log_dir = FLAGS.base_directory
tf.gfile.MakeDirs(FLAGS.output_path)
output_file = tf.gfile.GFile(
os.path.join(FLAGS.output_path, 'reviews.txt'), mode='w')
# Load data set.
if FLAGS.data_set == 'ptb':
raw_data = ptb_loader.ptb_raw_data(FLAGS.data_dir)
train_data, valid_data, _, _ = raw_data
elif FLAGS.data_set == 'imdb':
raw_data = imdb_loader.imdb_raw_data(FLAGS.data_dir)
train_data, valid_data = raw_data
else:
raise NotImplementedError
# Generating more data on train set.
if FLAGS.sample_mode == SAMPLE_TRAIN:
data_set = train_data
elif FLAGS.sample_mode == SAMPLE_VALIDATION:
data_set = valid_data
else:
raise NotImplementedError
# Dictionary and reverse dictionry.
if FLAGS.data_set == 'ptb':
word_to_id = ptb_loader.build_vocab(
os.path.join(FLAGS.data_dir, 'ptb.train.txt'))
elif FLAGS.data_set == 'imdb':
word_to_id = imdb_loader.build_vocab(
os.path.join(FLAGS.data_dir, 'vocab.txt'))
id_to_word = {v: k for k, v in word_to_id.iteritems()}
FLAGS.vocab_size = len(id_to_word)
print('Vocab size: %d' % FLAGS.vocab_size)
generate_samples(hparams, data_set, id_to_word, log_dir, output_file)
if __name__ == '__main__':
tf.app.run()
|