Spaces:
Running
Running
File size: 45,937 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Launch example:
[IMDB]
python train_mask_gan.py --data_dir
/tmp/imdb --data_set imdb --batch_size 128
--sequence_length 20 --base_directory /tmp/maskGAN_v0.01
--hparams="gen_rnn_size=650,gen_num_layers=2,dis_rnn_size=650,dis_num_layers=2
,critic_learning_rate=0.0009756,dis_learning_rate=0.0000585,
dis_train_iterations=8,gen_learning_rate=0.0016624,
gen_full_learning_rate_steps=1e9,gen_learning_rate_decay=0.999999,
rl_discount_rate=0.8835659" --mode TRAIN --max_steps 1000000
--generator_model seq2seq_vd --discriminator_model seq2seq_vd
--is_present_rate 0.5 --summaries_every 25 --print_every 25
--max_num_to_print=3 --generator_optimizer=adam
--seq2seq_share_embedding=True --baseline_method=critic
--attention_option=luong --n_gram_eval=4 --mask_strategy=contiguous
--gen_training_strategy=reinforce --dis_pretrain_steps=100
--perplexity_threshold=1000000
--dis_share_embedding=True --maskgan_ckpt
/tmp/model.ckpt-171091
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from functools import partial
import os
import time
# Dependency imports
import numpy as np
from six.moves import xrange
import tensorflow as tf
import pretrain_mask_gan
from data import imdb_loader
from data import ptb_loader
from model_utils import helper
from model_utils import model_construction
from model_utils import model_losses
from model_utils import model_optimization
# Data.
from model_utils import model_utils
from model_utils import n_gram
from models import evaluation_utils
from models import rollout
np.set_printoptions(precision=3)
np.set_printoptions(suppress=True)
MODE_TRAIN = 'TRAIN'
MODE_TRAIN_EVAL = 'TRAIN_EVAL'
MODE_VALIDATION = 'VALIDATION'
MODE_TEST = 'TEST'
## Binary and setup FLAGS.
tf.app.flags.DEFINE_enum(
'mode', 'TRAIN', [MODE_TRAIN, MODE_VALIDATION, MODE_TEST, MODE_TRAIN_EVAL],
'What this binary will do.')
tf.app.flags.DEFINE_string('master', '',
"""Name of the TensorFlow master to use.""")
tf.app.flags.DEFINE_string('eval_master', '',
"""Name prefix of the Tensorflow eval master.""")
tf.app.flags.DEFINE_integer('task', 0,
"""Task id of the replica running the training.""")
tf.app.flags.DEFINE_integer('ps_tasks', 0, """Number of tasks in the ps job.
If 0 no ps job is used.""")
## General FLAGS.
tf.app.flags.DEFINE_string(
'hparams', '', 'Comma separated list of name=value hyperparameter pairs.')
tf.app.flags.DEFINE_integer('batch_size', 20, 'The batch size.')
tf.app.flags.DEFINE_integer('vocab_size', 10000, 'The vocabulary size.')
tf.app.flags.DEFINE_integer('sequence_length', 20, 'The sequence length.')
tf.app.flags.DEFINE_integer('max_steps', 1000000,
'Maximum number of steps to run.')
tf.app.flags.DEFINE_string(
'mask_strategy', 'random', 'Strategy for masking the words. Determine the '
'characterisitics of how the words are dropped out. One of '
"['contiguous', 'random'].")
tf.app.flags.DEFINE_float('is_present_rate', 0.5,
'Percent of tokens present in the forward sequence.')
tf.app.flags.DEFINE_float('is_present_rate_decay', None, 'Decay rate for the '
'percent of words that are real (are present).')
tf.app.flags.DEFINE_string(
'generator_model', 'seq2seq',
"Type of Generator model. One of ['rnn', 'seq2seq', 'seq2seq_zaremba',"
"'rnn_zaremba', 'rnn_nas', 'seq2seq_nas']")
tf.app.flags.DEFINE_string(
'attention_option', None,
"Attention mechanism. One of [None, 'luong', 'bahdanau']")
tf.app.flags.DEFINE_string(
'discriminator_model', 'bidirectional',
"Type of Discriminator model. One of ['cnn', 'rnn', 'bidirectional', "
"'rnn_zaremba', 'bidirectional_zaremba', 'rnn_nas', 'rnn_vd', 'seq2seq_vd']"
)
tf.app.flags.DEFINE_boolean('seq2seq_share_embedding', False,
'Whether to share the '
'embeddings between the encoder and decoder.')
tf.app.flags.DEFINE_boolean(
'dis_share_embedding', False, 'Whether to share the '
'embeddings between the generator and discriminator.')
tf.app.flags.DEFINE_boolean('dis_update_share_embedding', False, 'Whether the '
'discriminator should update the shared embedding.')
tf.app.flags.DEFINE_boolean('use_gen_mode', False,
'Use the mode of the generator '
'to produce samples.')
tf.app.flags.DEFINE_boolean('critic_update_dis_vars', False,
'Whether the critic '
'updates the discriminator variables.')
## Training FLAGS.
tf.app.flags.DEFINE_string(
'gen_training_strategy', 'reinforce',
"Method for training the Generator. One of ['cross_entropy', 'reinforce']")
tf.app.flags.DEFINE_string(
'generator_optimizer', 'adam',
"Type of Generator optimizer. One of ['sgd', 'adam']")
tf.app.flags.DEFINE_float('grad_clipping', 10., 'Norm for gradient clipping.')
tf.app.flags.DEFINE_float('advantage_clipping', 5., 'Clipping for advantages.')
tf.app.flags.DEFINE_string(
'baseline_method', None,
"Approach for baseline. One of ['critic', 'dis_batch', 'ema', None]")
tf.app.flags.DEFINE_float('perplexity_threshold', 15000,
'Limit for perplexity before terminating job.')
tf.app.flags.DEFINE_float('zoneout_drop_prob', 0.1,
'Probability for dropping parameter for zoneout.')
tf.app.flags.DEFINE_float('keep_prob', 0.5,
'Probability for keeping parameter for dropout.')
## Logging and evaluation FLAGS.
tf.app.flags.DEFINE_integer('print_every', 250,
'Frequency to print and log the '
'outputs of the model.')
tf.app.flags.DEFINE_integer('max_num_to_print', 5,
'Number of samples to log/print.')
tf.app.flags.DEFINE_boolean('print_verbose', False, 'Whether to print in full.')
tf.app.flags.DEFINE_integer('summaries_every', 100,
'Frequency to compute summaries.')
tf.app.flags.DEFINE_boolean('eval_language_model', False,
'Whether to evaluate on '
'all words as in language modeling.')
tf.app.flags.DEFINE_float('eval_interval_secs', 60,
'Delay for evaluating model.')
tf.app.flags.DEFINE_integer(
'n_gram_eval', 4, """The degree of the n-grams to use for evaluation.""")
tf.app.flags.DEFINE_integer(
'epoch_size_override', None,
'If an integer, this dictates the size of the epochs and will potentially '
'not iterate over all the data.')
tf.app.flags.DEFINE_integer('eval_epoch_size_override', None,
'Number of evaluation steps.')
## Directories and checkpoints.
tf.app.flags.DEFINE_string('base_directory', '/tmp/maskGAN_v0.00',
'Base directory for the logging, events and graph.')
tf.app.flags.DEFINE_string('data_set', 'ptb', 'Data set to operate on. One of'
"['ptb', 'imdb']")
tf.app.flags.DEFINE_string('data_dir', '/tmp/data/ptb',
'Directory for the training data.')
tf.app.flags.DEFINE_string(
'language_model_ckpt_dir', None,
'Directory storing checkpoints to initialize the model. Pretrained models'
'are stored at /tmp/maskGAN/pretrained/')
tf.app.flags.DEFINE_string(
'language_model_ckpt_dir_reversed', None,
'Directory storing checkpoints of reversed models to initialize the model.'
'Pretrained models stored at'
'are stored at /tmp/PTB/pretrained_reversed')
tf.app.flags.DEFINE_string(
'maskgan_ckpt', None,
'Override which checkpoint file to use to restore the '
'model. A pretrained seq2seq_zaremba model is stored at '
'/tmp/maskGAN/pretrain/seq2seq_zaremba/train/model.ckpt-64912')
tf.app.flags.DEFINE_boolean('wasserstein_objective', False,
'(DEPRECATED) Whether to use the WGAN training.')
tf.app.flags.DEFINE_integer('num_rollouts', 1,
'The number of rolled out predictions to make.')
tf.app.flags.DEFINE_float('c_lower', -0.01, 'Lower bound for weights.')
tf.app.flags.DEFINE_float('c_upper', 0.01, 'Upper bound for weights.')
FLAGS = tf.app.flags.FLAGS
def create_hparams():
"""Create the hparams object for generic training hyperparameters."""
hparams = tf.contrib.training.HParams(
gen_num_layers=2,
dis_num_layers=2,
gen_rnn_size=740,
dis_rnn_size=740,
gen_learning_rate=5e-4,
dis_learning_rate=5e-3,
critic_learning_rate=5e-3,
dis_train_iterations=1,
gen_learning_rate_decay=1.0,
gen_full_learning_rate_steps=1e7,
baseline_decay=0.999999,
rl_discount_rate=0.9,
gen_vd_keep_prob=0.5,
dis_vd_keep_prob=0.5,
dis_pretrain_learning_rate=5e-3,
dis_num_filters=128,
dis_hidden_dim=128,
gen_nas_keep_prob_0=0.85,
gen_nas_keep_prob_1=0.55,
dis_nas_keep_prob_0=0.85,
dis_nas_keep_prob_1=0.55)
# Command line flags override any of the preceding hyperparameter values.
if FLAGS.hparams:
hparams = hparams.parse(FLAGS.hparams)
return hparams
def create_MaskGAN(hparams, is_training):
"""Create the MaskGAN model.
Args:
hparams: Hyperparameters for the MaskGAN.
is_training: Boolean indicating operational mode (train/inference).
evaluated with a teacher forcing regime.
Return:
model: Namedtuple for specifying the MaskGAN.
"""
global_step = tf.Variable(0, name='global_step', trainable=False)
new_learning_rate = tf.placeholder(tf.float32, [], name='new_learning_rate')
learning_rate = tf.Variable(0.0, name='learning_rate', trainable=False)
learning_rate_update = tf.assign(learning_rate, new_learning_rate)
new_rate = tf.placeholder(tf.float32, [], name='new_rate')
percent_real_var = tf.Variable(0.0, trainable=False)
percent_real_update = tf.assign(percent_real_var, new_rate)
## Placeholders.
inputs = tf.placeholder(
tf.int32, shape=[FLAGS.batch_size, FLAGS.sequence_length])
targets = tf.placeholder(
tf.int32, shape=[FLAGS.batch_size, FLAGS.sequence_length])
present = tf.placeholder(
tf.bool, shape=[FLAGS.batch_size, FLAGS.sequence_length])
# TODO(adai): Placeholder for IMDB label.
## Real Sequence is the targets.
real_sequence = targets
## Fakse Sequence from the Generator.
# TODO(adai): Generator must have IMDB labels placeholder.
(fake_sequence, fake_logits, fake_log_probs, fake_gen_initial_state,
fake_gen_final_state, _) = model_construction.create_generator(
hparams,
inputs,
targets,
present,
is_training=is_training,
is_validating=False)
(_, eval_logits, _, eval_initial_state, eval_final_state,
_) = model_construction.create_generator(
hparams,
inputs,
targets,
present,
is_training=False,
is_validating=True,
reuse=True)
## Discriminator.
fake_predictions = model_construction.create_discriminator(
hparams,
fake_sequence,
is_training=is_training,
inputs=inputs,
present=present)
real_predictions = model_construction.create_discriminator(
hparams,
real_sequence,
is_training=is_training,
reuse=True,
inputs=inputs,
present=present)
## Critic.
# The critic will be used to estimate the forward rewards to the Generator.
if FLAGS.baseline_method == 'critic':
est_state_values = model_construction.create_critic(
hparams, fake_sequence, is_training=is_training)
else:
est_state_values = None
## Discriminator Loss.
[dis_loss, dis_loss_fake, dis_loss_real] = model_losses.create_dis_loss(
fake_predictions, real_predictions, present)
## Average log-perplexity for only missing words. However, to do this,
# the logits are still computed using teacher forcing, that is, the ground
# truth tokens are fed in at each time point to be valid.
avg_log_perplexity = model_losses.calculate_log_perplexity(
eval_logits, targets, present)
## Generator Objective.
# 1. Cross Entropy losses on missing tokens.
fake_cross_entropy_losses = model_losses.create_masked_cross_entropy_loss(
targets, present, fake_logits)
# 2. GAN REINFORCE losses.
[
fake_RL_loss, fake_log_probs, fake_rewards, fake_advantages,
fake_baselines, fake_averages_op, critic_loss, cumulative_rewards
] = model_losses.calculate_reinforce_objective(
hparams, fake_log_probs, fake_predictions, present, est_state_values)
## Pre-training.
if FLAGS.gen_pretrain_steps:
raise NotImplementedError
# # TODO(liamfedus): Rewrite this.
# fwd_cross_entropy_loss = tf.reduce_mean(fwd_cross_entropy_losses)
# gen_pretrain_op = model_optimization.create_gen_pretrain_op(
# hparams, fwd_cross_entropy_loss, global_step)
else:
gen_pretrain_op = None
if FLAGS.dis_pretrain_steps:
dis_pretrain_op = model_optimization.create_dis_pretrain_op(
hparams, dis_loss, global_step)
else:
dis_pretrain_op = None
## Generator Train Op.
# 1. Cross-Entropy.
if FLAGS.gen_training_strategy == 'cross_entropy':
gen_loss = tf.reduce_mean(fake_cross_entropy_losses)
[gen_train_op, gen_grads,
gen_vars] = model_optimization.create_gen_train_op(
hparams, learning_rate, gen_loss, global_step, mode='MINIMIZE')
# 2. GAN (REINFORCE)
elif FLAGS.gen_training_strategy == 'reinforce':
gen_loss = fake_RL_loss
[gen_train_op, gen_grads,
gen_vars] = model_optimization.create_reinforce_gen_train_op(
hparams, learning_rate, gen_loss, fake_averages_op, global_step)
else:
raise NotImplementedError
## Discriminator Train Op.
dis_train_op, dis_grads, dis_vars = model_optimization.create_dis_train_op(
hparams, dis_loss, global_step)
## Critic Train Op.
if critic_loss is not None:
[critic_train_op, _, _] = model_optimization.create_critic_train_op(
hparams, critic_loss, global_step)
dis_train_op = tf.group(dis_train_op, critic_train_op)
## Summaries.
with tf.name_scope('general'):
tf.summary.scalar('percent_real', percent_real_var)
tf.summary.scalar('learning_rate', learning_rate)
with tf.name_scope('generator_objectives'):
tf.summary.scalar('gen_objective', tf.reduce_mean(gen_loss))
tf.summary.scalar('gen_loss_cross_entropy',
tf.reduce_mean(fake_cross_entropy_losses))
with tf.name_scope('REINFORCE'):
with tf.name_scope('objective'):
tf.summary.scalar('fake_RL_loss', tf.reduce_mean(fake_RL_loss))
with tf.name_scope('rewards'):
helper.variable_summaries(cumulative_rewards, 'rewards')
with tf.name_scope('advantages'):
helper.variable_summaries(fake_advantages, 'advantages')
with tf.name_scope('baselines'):
helper.variable_summaries(fake_baselines, 'baselines')
with tf.name_scope('log_probs'):
helper.variable_summaries(fake_log_probs, 'log_probs')
with tf.name_scope('discriminator_losses'):
tf.summary.scalar('dis_loss', dis_loss)
tf.summary.scalar('dis_loss_fake_sequence', dis_loss_fake)
tf.summary.scalar('dis_loss_prob_fake_sequence', tf.exp(-dis_loss_fake))
tf.summary.scalar('dis_loss_real_sequence', dis_loss_real)
tf.summary.scalar('dis_loss_prob_real_sequence', tf.exp(-dis_loss_real))
if critic_loss is not None:
with tf.name_scope('critic_losses'):
tf.summary.scalar('critic_loss', critic_loss)
with tf.name_scope('logits'):
helper.variable_summaries(fake_logits, 'fake_logits')
for v, g in zip(gen_vars, gen_grads):
helper.variable_summaries(v, v.op.name)
helper.variable_summaries(g, 'grad/' + v.op.name)
for v, g in zip(dis_vars, dis_grads):
helper.variable_summaries(v, v.op.name)
helper.variable_summaries(g, 'grad/' + v.op.name)
merge_summaries_op = tf.summary.merge_all()
text_summary_placeholder = tf.placeholder(tf.string)
text_summary_op = tf.summary.text('Samples', text_summary_placeholder)
# Model saver.
saver = tf.train.Saver(keep_checkpoint_every_n_hours=1, max_to_keep=5)
# Named tuple that captures elements of the MaskGAN model.
Model = collections.namedtuple('Model', [
'inputs', 'targets', 'present', 'percent_real_update', 'new_rate',
'fake_sequence', 'fake_logits', 'fake_rewards', 'fake_baselines',
'fake_advantages', 'fake_log_probs', 'fake_predictions',
'real_predictions', 'fake_cross_entropy_losses', 'fake_gen_initial_state',
'fake_gen_final_state', 'eval_initial_state', 'eval_final_state',
'avg_log_perplexity', 'dis_loss', 'gen_loss', 'critic_loss',
'cumulative_rewards', 'dis_train_op', 'gen_train_op', 'gen_pretrain_op',
'dis_pretrain_op', 'merge_summaries_op', 'global_step',
'new_learning_rate', 'learning_rate_update', 'saver', 'text_summary_op',
'text_summary_placeholder'
])
model = Model(
inputs, targets, present, percent_real_update, new_rate, fake_sequence,
fake_logits, fake_rewards, fake_baselines, fake_advantages,
fake_log_probs, fake_predictions, real_predictions,
fake_cross_entropy_losses, fake_gen_initial_state, fake_gen_final_state,
eval_initial_state, eval_final_state, avg_log_perplexity, dis_loss,
gen_loss, critic_loss, cumulative_rewards, dis_train_op, gen_train_op,
gen_pretrain_op, dis_pretrain_op, merge_summaries_op, global_step,
new_learning_rate, learning_rate_update, saver, text_summary_op,
text_summary_placeholder)
return model
def compute_geometric_average(percent_captured):
"""Compute the geometric average of the n-gram metrics."""
res = 1.
for _, n_gram_percent in percent_captured.iteritems():
res *= n_gram_percent
return np.power(res, 1. / float(len(percent_captured)))
def compute_arithmetic_average(percent_captured):
"""Compute the arithmetic average of the n-gram metrics."""
N = len(percent_captured)
res = 0.
for _, n_gram_percent in percent_captured.iteritems():
res += n_gram_percent
return res / float(N)
def get_iterator(data):
"""Return the data iterator."""
if FLAGS.data_set == 'ptb':
iterator = ptb_loader.ptb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length,
FLAGS.epoch_size_override)
elif FLAGS.data_set == 'imdb':
iterator = imdb_loader.imdb_iterator(data, FLAGS.batch_size,
FLAGS.sequence_length)
return iterator
def train_model(hparams, data, log_dir, log, id_to_word, data_ngram_counts):
"""Train model.
Args:
hparams: Hyperparameters for the MaskGAN.
data: Data to evaluate.
log_dir: Directory to save checkpoints.
log: Readable log for the experiment.
id_to_word: Dictionary of indices to words.
data_ngram_counts: Dictionary of hashed(n-gram tuples) to counts in the
data_set.
"""
print('Training model.')
tf.logging.info('Training model.')
# Boolean indicating operational mode.
is_training = True
# Write all the information to the logs.
log.write('hparams\n')
log.write(str(hparams))
log.flush()
is_chief = FLAGS.task == 0
with tf.Graph().as_default():
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
container_name = ''
with tf.container(container_name):
# Construct the model.
if FLAGS.num_rollouts == 1:
model = create_MaskGAN(hparams, is_training)
elif FLAGS.num_rollouts > 1:
model = rollout.create_rollout_MaskGAN(hparams, is_training)
else:
raise ValueError
print('\nTrainable Variables in Graph:')
for v in tf.trainable_variables():
print(v)
## Retrieve the initial savers.
init_savers = model_utils.retrieve_init_savers(hparams)
## Initial saver function to supervisor.
init_fn = partial(model_utils.init_fn, init_savers)
# Create the supervisor. It will take care of initialization,
# summaries, checkpoints, and recovery.
sv = tf.train.Supervisor(
logdir=log_dir,
is_chief=is_chief,
saver=model.saver,
global_step=model.global_step,
save_model_secs=60,
recovery_wait_secs=30,
summary_op=None,
init_fn=init_fn)
# Get an initialized, and possibly recovered session. Launch the
# services: Checkpointing, Summaries, step counting.
#
# When multiple replicas of this program are running the services are
# only launched by the 'chief' replica.
with sv.managed_session(FLAGS.master) as sess:
## Pretrain the generator.
if FLAGS.gen_pretrain_steps:
pretrain_mask_gan.pretrain_generator(sv, sess, model, data, log,
id_to_word, data_ngram_counts,
is_chief)
## Pretrain the discriminator.
if FLAGS.dis_pretrain_steps:
pretrain_mask_gan.pretrain_discriminator(
sv, sess, model, data, log, id_to_word, data_ngram_counts,
is_chief)
# Initial indicators for printing and summarizing.
print_step_division = -1
summary_step_division = -1
# Run iterative computation in a loop.
while not sv.ShouldStop():
is_present_rate = FLAGS.is_present_rate
if FLAGS.is_present_rate_decay is not None:
is_present_rate *= (1. - FLAGS.is_present_rate_decay)
model_utils.assign_percent_real(sess, model.percent_real_update,
model.new_rate, is_present_rate)
# GAN training.
avg_epoch_gen_loss, avg_epoch_dis_loss = [], []
cumulative_costs = 0.
gen_iters = 0
# Generator and Discriminator statefulness initial evaluation.
# TODO(liamfedus): Throughout the code I am implicitly assuming
# that the Generator and Discriminator are equal sized.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_initial_state, model.fake_gen_initial_state])
dis_initial_state_eval = fake_gen_initial_state_eval
# Save zeros state to reset later.
zeros_state = fake_gen_initial_state_eval
## Offset Discriminator.
if FLAGS.ps_tasks == 0:
dis_offset = 1
else:
dis_offset = FLAGS.task * 1000 + 1
dis_iterator = get_iterator(data)
for i in range(dis_offset):
try:
dis_x, dis_y, _ = next(dis_iterator)
except StopIteration:
dis_iterator = get_iterator(data)
dis_initial_state_eval = zeros_state
dis_x, dis_y, _ = next(dis_iterator)
p = model_utils.generate_mask()
# Construct the train feed.
train_feed = {
model.inputs: dis_x,
model.targets: dis_y,
model.present: p
}
if FLAGS.data_set == 'ptb':
# Statefulness of the Generator being used for Discriminator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
train_feed[c] = dis_initial_state_eval[i].c
train_feed[h] = dis_initial_state_eval[i].h
# Determine the state had the Generator run over real data. We
# use this state for the Discriminator.
[dis_initial_state_eval] = sess.run(
[model.fake_gen_final_state], train_feed)
## Training loop.
iterator = get_iterator(data)
gen_initial_state_eval = zeros_state
if FLAGS.ps_tasks > 0:
gen_offset = FLAGS.task * 1000 + 1
for i in range(gen_offset):
try:
next(iterator)
except StopIteration:
dis_iterator = get_iterator(data)
dis_initial_state_eval = zeros_state
next(dis_iterator)
for x, y, _ in iterator:
for _ in xrange(hparams.dis_train_iterations):
try:
dis_x, dis_y, _ = next(dis_iterator)
except StopIteration:
dis_iterator = get_iterator(data)
dis_initial_state_eval = zeros_state
dis_x, dis_y, _ = next(dis_iterator)
if FLAGS.data_set == 'ptb':
[dis_initial_state_eval] = sess.run(
[model.fake_gen_initial_state])
p = model_utils.generate_mask()
# Construct the train feed.
train_feed = {
model.inputs: dis_x,
model.targets: dis_y,
model.present: p
}
# Statefulness for the Discriminator.
if FLAGS.data_set == 'ptb':
for i, (c, h) in enumerate(model.fake_gen_initial_state):
train_feed[c] = dis_initial_state_eval[i].c
train_feed[h] = dis_initial_state_eval[i].h
_, dis_loss_eval, step = sess.run(
[model.dis_train_op, model.dis_loss, model.global_step],
feed_dict=train_feed)
# Determine the state had the Generator run over real data.
# Use this state for the Discriminator.
[dis_initial_state_eval] = sess.run(
[model.fake_gen_final_state], train_feed)
# Randomly mask out tokens.
p = model_utils.generate_mask()
# Construct the train feed.
train_feed = {model.inputs: x, model.targets: y, model.present: p}
# Statefulness for Generator.
if FLAGS.data_set == 'ptb':
tf.logging.info('Generator is stateful.')
print('Generator is stateful.')
# Statefulness for *evaluation* Generator.
for i, (c, h) in enumerate(model.eval_initial_state):
train_feed[c] = gen_initial_state_eval[i].c
train_feed[h] = gen_initial_state_eval[i].h
# Statefulness for Generator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
train_feed[c] = fake_gen_initial_state_eval[i].c
train_feed[h] = fake_gen_initial_state_eval[i].h
# Determine whether to decay learning rate.
lr_decay = hparams.gen_learning_rate_decay**max(
step + 1 - hparams.gen_full_learning_rate_steps, 0.0)
# Assign learning rate.
gen_learning_rate = hparams.gen_learning_rate * lr_decay
model_utils.assign_learning_rate(sess, model.learning_rate_update,
model.new_learning_rate,
gen_learning_rate)
[_, gen_loss_eval, gen_log_perplexity_eval, step] = sess.run(
[
model.gen_train_op, model.gen_loss,
model.avg_log_perplexity, model.global_step
],
feed_dict=train_feed)
cumulative_costs += gen_log_perplexity_eval
gen_iters += 1
# Determine the state had the Generator run over real data.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_final_state,
model.fake_gen_final_state], train_feed)
avg_epoch_dis_loss.append(dis_loss_eval)
avg_epoch_gen_loss.append(gen_loss_eval)
## Summaries.
# Calulate rolling perplexity.
perplexity = np.exp(cumulative_costs / gen_iters)
if is_chief and (step / FLAGS.summaries_every >
summary_step_division):
summary_step_division = step / FLAGS.summaries_every
# Confirm perplexity is not infinite.
if (not np.isfinite(perplexity) or
perplexity >= FLAGS.perplexity_threshold):
print('Training raising FloatingPoinError.')
raise FloatingPointError(
'Training infinite perplexity: %.3f' % perplexity)
# Graph summaries.
summary_str = sess.run(
model.merge_summaries_op, feed_dict=train_feed)
sv.SummaryComputed(sess, summary_str)
# Summary: n-gram
avg_percent_captured = {'2': 0., '3': 0., '4': 0.}
for n, data_ngram_count in data_ngram_counts.iteritems():
batch_percent_captured = evaluation_utils.sequence_ngram_evaluation(
sess, model.fake_sequence, log, train_feed,
data_ngram_count, int(n))
summary_percent_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/%s-grams_percent_correct' % n,
simple_value=batch_percent_captured)
])
sv.SummaryComputed(
sess, summary_percent_str, global_step=step)
# Summary: geometric_avg
geometric_avg = compute_geometric_average(avg_percent_captured)
summary_geometric_avg_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/geometric_avg', simple_value=geometric_avg)
])
sv.SummaryComputed(
sess, summary_geometric_avg_str, global_step=step)
# Summary: arithmetic_avg
arithmetic_avg = compute_arithmetic_average(
avg_percent_captured)
summary_arithmetic_avg_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/arithmetic_avg',
simple_value=arithmetic_avg)
])
sv.SummaryComputed(
sess, summary_arithmetic_avg_str, global_step=step)
# Summary: perplexity
summary_perplexity_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/perplexity', simple_value=perplexity)
])
sv.SummaryComputed(
sess, summary_perplexity_str, global_step=step)
## Printing and logging
if is_chief and (step / FLAGS.print_every > print_step_division):
print_step_division = (step / FLAGS.print_every)
print('global_step: %d' % step)
print(' perplexity: %.3f' % perplexity)
print(' gen_learning_rate: %.6f' % gen_learning_rate)
log.write('global_step: %d\n' % step)
log.write(' perplexity: %.3f\n' % perplexity)
log.write(' gen_learning_rate: %.6f' % gen_learning_rate)
# Average percent captured for each of the n-grams.
avg_percent_captured = {'2': 0., '3': 0., '4': 0.}
for n, data_ngram_count in data_ngram_counts.iteritems():
batch_percent_captured = evaluation_utils.sequence_ngram_evaluation(
sess, model.fake_sequence, log, train_feed,
data_ngram_count, int(n))
avg_percent_captured[n] = batch_percent_captured
print(' percent of %s-grams captured: %.3f.' %
(n, batch_percent_captured))
log.write(' percent of %s-grams captured: %.3f.\n' %
(n, batch_percent_captured))
geometric_avg = compute_geometric_average(avg_percent_captured)
print(' geometric_avg: %.3f.' % geometric_avg)
log.write(' geometric_avg: %.3f.' % geometric_avg)
arithmetic_avg = compute_arithmetic_average(
avg_percent_captured)
print(' arithmetic_avg: %.3f.' % arithmetic_avg)
log.write(' arithmetic_avg: %.3f.' % arithmetic_avg)
evaluation_utils.print_and_log_losses(
log, step, is_present_rate, avg_epoch_dis_loss,
avg_epoch_gen_loss)
if FLAGS.gen_training_strategy == 'reinforce':
evaluation_utils.generate_RL_logs(sess, model, log,
id_to_word, train_feed)
else:
evaluation_utils.generate_logs(sess, model, log, id_to_word,
train_feed)
log.flush()
log.close()
def evaluate_once(data, sv, model, sess, train_dir, log, id_to_word,
data_ngram_counts, eval_saver):
"""Evaluate model for a number of steps.
Args:
data: Dataset.
sv: Supervisor.
model: The GAN model we have just built.
sess: A session to use.
train_dir: Path to a directory containing checkpoints.
log: Evaluation log for evaluation.
id_to_word: Dictionary of indices to words.
data_ngram_counts: Dictionary of hashed(n-gram tuples) to counts in the
data_set.
eval_saver: Evaluation saver.r.
"""
tf.logging.info('Evaluate Once.')
# Load the last model checkpoint, or initialize the graph.
model_save_path = tf.latest_checkpoint(train_dir)
if not model_save_path:
tf.logging.warning('No checkpoint yet in: %s', train_dir)
return
tf.logging.info('Starting eval of: %s' % model_save_path)
tf.logging.info('Only restoring trainable variables.')
eval_saver.restore(sess, model_save_path)
# Run the requested number of evaluation steps
avg_epoch_gen_loss, avg_epoch_dis_loss = [], []
cumulative_costs = 0.
# Average percent captured for each of the n-grams.
avg_percent_captured = {'2': 0., '3': 0., '4': 0.}
# Set a random seed to keep fixed mask.
np.random.seed(0)
gen_iters = 0
# Generator statefulness over the epoch.
# TODO(liamfedus): Check this.
[gen_initial_state_eval, fake_gen_initial_state_eval] = sess.run(
[model.eval_initial_state, model.fake_gen_initial_state])
if FLAGS.eval_language_model:
is_present_rate = 0.
tf.logging.info('Overriding is_present_rate=0. for evaluation.')
print('Overriding is_present_rate=0. for evaluation.')
iterator = get_iterator(data)
for x, y, _ in iterator:
if FLAGS.eval_language_model:
is_present_rate = 0.
else:
is_present_rate = FLAGS.is_present_rate
tf.logging.info('Evaluating on is_present_rate=%.3f.' % is_present_rate)
model_utils.assign_percent_real(sess, model.percent_real_update,
model.new_rate, is_present_rate)
# Randomly mask out tokens.
p = model_utils.generate_mask()
eval_feed = {model.inputs: x, model.targets: y, model.present: p}
if FLAGS.data_set == 'ptb':
# Statefulness for *evaluation* Generator.
for i, (c, h) in enumerate(model.eval_initial_state):
eval_feed[c] = gen_initial_state_eval[i].c
eval_feed[h] = gen_initial_state_eval[i].h
# Statefulness for the Generator.
for i, (c, h) in enumerate(model.fake_gen_initial_state):
eval_feed[c] = fake_gen_initial_state_eval[i].c
eval_feed[h] = fake_gen_initial_state_eval[i].h
[
gen_log_perplexity_eval, dis_loss_eval, gen_loss_eval,
gen_initial_state_eval, fake_gen_initial_state_eval, step
] = sess.run(
[
model.avg_log_perplexity, model.dis_loss, model.gen_loss,
model.eval_final_state, model.fake_gen_final_state,
model.global_step
],
feed_dict=eval_feed)
for n, data_ngram_count in data_ngram_counts.iteritems():
batch_percent_captured = evaluation_utils.sequence_ngram_evaluation(
sess, model.fake_sequence, log, eval_feed, data_ngram_count, int(n))
avg_percent_captured[n] += batch_percent_captured
cumulative_costs += gen_log_perplexity_eval
avg_epoch_dis_loss.append(dis_loss_eval)
avg_epoch_gen_loss.append(gen_loss_eval)
gen_iters += 1
# Calulate rolling metrics.
perplexity = np.exp(cumulative_costs / gen_iters)
for n, _ in avg_percent_captured.iteritems():
avg_percent_captured[n] /= gen_iters
# Confirm perplexity is not infinite.
if not np.isfinite(perplexity) or perplexity >= FLAGS.perplexity_threshold:
print('Evaluation raising FloatingPointError.')
raise FloatingPointError(
'Evaluation infinite perplexity: %.3f' % perplexity)
## Printing and logging.
evaluation_utils.print_and_log_losses(log, step, is_present_rate,
avg_epoch_dis_loss, avg_epoch_gen_loss)
print(' perplexity: %.3f' % perplexity)
log.write(' perplexity: %.3f\n' % perplexity)
for n, n_gram_percent in avg_percent_captured.iteritems():
n = int(n)
print(' percent of %d-grams captured: %.3f.' % (n, n_gram_percent))
log.write(' percent of %d-grams captured: %.3f.\n' % (n, n_gram_percent))
samples = evaluation_utils.generate_logs(sess, model, log, id_to_word,
eval_feed)
## Summaries.
summary_str = sess.run(model.merge_summaries_op, feed_dict=eval_feed)
sv.SummaryComputed(sess, summary_str)
# Summary: text
summary_str = sess.run(model.text_summary_op,
{model.text_summary_placeholder: '\n\n'.join(samples)})
sv.SummaryComputed(sess, summary_str, global_step=step)
# Summary: n-gram
for n, n_gram_percent in avg_percent_captured.iteritems():
n = int(n)
summary_percent_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/%d-grams_percent_correct' % n,
simple_value=n_gram_percent)
])
sv.SummaryComputed(sess, summary_percent_str, global_step=step)
# Summary: geometric_avg
geometric_avg = compute_geometric_average(avg_percent_captured)
summary_geometric_avg_str = tf.Summary(value=[
tf.Summary.Value(tag='general/geometric_avg', simple_value=geometric_avg)
])
sv.SummaryComputed(sess, summary_geometric_avg_str, global_step=step)
# Summary: arithmetic_avg
arithmetic_avg = compute_arithmetic_average(avg_percent_captured)
summary_arithmetic_avg_str = tf.Summary(value=[
tf.Summary.Value(
tag='general/arithmetic_avg', simple_value=arithmetic_avg)
])
sv.SummaryComputed(sess, summary_arithmetic_avg_str, global_step=step)
# Summary: perplexity
summary_perplexity_str = tf.Summary(value=[
tf.Summary.Value(tag='general/perplexity', simple_value=perplexity)
])
sv.SummaryComputed(sess, summary_perplexity_str, global_step=step)
def evaluate_model(hparams, data, train_dir, log, id_to_word,
data_ngram_counts):
"""Evaluate MaskGAN model.
Args:
hparams: Hyperparameters for the MaskGAN.
data: Data to evaluate.
train_dir: Path to a directory containing checkpoints.
id_to_word: Dictionary of indices to words.
data_ngram_counts: Dictionary of hashed(n-gram tuples) to counts in the
data_set.
"""
tf.logging.error('Evaluate model.')
# Boolean indicating operational mode.
is_training = False
if FLAGS.mode == MODE_VALIDATION:
logdir = FLAGS.base_directory + '/validation'
elif FLAGS.mode == MODE_TRAIN_EVAL:
logdir = FLAGS.base_directory + '/train_eval'
elif FLAGS.mode == MODE_TEST:
logdir = FLAGS.base_directory + '/test'
else:
raise NotImplementedError
# Wait for a checkpoint to exist.
print(train_dir)
print(tf.train.latest_checkpoint(train_dir))
while not tf.train.latest_checkpoint(train_dir):
tf.logging.error('Waiting for checkpoint...')
print('Waiting for checkpoint...')
time.sleep(10)
with tf.Graph().as_default():
# Use a separate container for each trial
container_name = ''
with tf.container(container_name):
# Construct the model.
if FLAGS.num_rollouts == 1:
model = create_MaskGAN(hparams, is_training)
elif FLAGS.num_rollouts > 1:
model = rollout.create_rollout_MaskGAN(hparams, is_training)
else:
raise ValueError
# Create the supervisor. It will take care of initialization, summaries,
# checkpoints, and recovery. We only pass the trainable variables
# to load since things like baselines keep batch_size which may not
# match between training and evaluation.
evaluation_variables = tf.trainable_variables()
evaluation_variables.append(model.global_step)
eval_saver = tf.train.Saver(var_list=evaluation_variables)
sv = tf.Supervisor(logdir=logdir)
sess = sv.PrepareSession(FLAGS.eval_master, start_standard_services=False)
tf.logging.info('Before sv.Loop.')
sv.Loop(FLAGS.eval_interval_secs, evaluate_once,
(data, sv, model, sess, train_dir, log, id_to_word,
data_ngram_counts, eval_saver))
sv.WaitForStop()
tf.logging.info('sv.Stop().')
sv.Stop()
def main(_):
hparams = create_hparams()
train_dir = FLAGS.base_directory + '/train'
# Load data set.
if FLAGS.data_set == 'ptb':
raw_data = ptb_loader.ptb_raw_data(FLAGS.data_dir)
train_data, valid_data, test_data, _ = raw_data
valid_data_flat = valid_data
elif FLAGS.data_set == 'imdb':
raw_data = imdb_loader.imdb_raw_data(FLAGS.data_dir)
# TODO(liamfedus): Get an IMDB test partition.
train_data, valid_data = raw_data
valid_data_flat = [word for review in valid_data for word in review]
else:
raise NotImplementedError
if FLAGS.mode == MODE_TRAIN or FLAGS.mode == MODE_TRAIN_EVAL:
data_set = train_data
elif FLAGS.mode == MODE_VALIDATION:
data_set = valid_data
elif FLAGS.mode == MODE_TEST:
data_set = test_data
else:
raise NotImplementedError
# Dictionary and reverse dictionry.
if FLAGS.data_set == 'ptb':
word_to_id = ptb_loader.build_vocab(
os.path.join(FLAGS.data_dir, 'ptb.train.txt'))
elif FLAGS.data_set == 'imdb':
word_to_id = imdb_loader.build_vocab(
os.path.join(FLAGS.data_dir, 'vocab.txt'))
id_to_word = {v: k for k, v in word_to_id.iteritems()}
# Dictionary of Training Set n-gram counts.
bigram_tuples = n_gram.find_all_ngrams(valid_data_flat, n=2)
trigram_tuples = n_gram.find_all_ngrams(valid_data_flat, n=3)
fourgram_tuples = n_gram.find_all_ngrams(valid_data_flat, n=4)
bigram_counts = n_gram.construct_ngrams_dict(bigram_tuples)
trigram_counts = n_gram.construct_ngrams_dict(trigram_tuples)
fourgram_counts = n_gram.construct_ngrams_dict(fourgram_tuples)
print('Unique %d-grams: %d' % (2, len(bigram_counts)))
print('Unique %d-grams: %d' % (3, len(trigram_counts)))
print('Unique %d-grams: %d' % (4, len(fourgram_counts)))
data_ngram_counts = {
'2': bigram_counts,
'3': trigram_counts,
'4': fourgram_counts
}
# TODO(liamfedus): This was necessary because there was a problem with our
# originally trained IMDB models. The EOS_INDEX was off by one, which means,
# two words were mapping to index 86933. The presence of '</s>' is going
# to throw and out of vocabulary error.
FLAGS.vocab_size = len(id_to_word)
print('Vocab size: %d' % FLAGS.vocab_size)
tf.gfile.MakeDirs(FLAGS.base_directory)
if FLAGS.mode == MODE_TRAIN:
log = tf.gfile.GFile(
os.path.join(FLAGS.base_directory, 'train-log.txt'), mode='w')
elif FLAGS.mode == MODE_VALIDATION:
log = tf.gfile.GFile(
os.path.join(FLAGS.base_directory, 'validation-log.txt'), mode='w')
elif FLAGS.mode == MODE_TRAIN_EVAL:
log = tf.gfile.GFile(
os.path.join(FLAGS.base_directory, 'train_eval-log.txt'), mode='w')
else:
log = tf.gfile.GFile(
os.path.join(FLAGS.base_directory, 'test-log.txt'), mode='w')
if FLAGS.mode == MODE_TRAIN:
train_model(hparams, data_set, train_dir, log, id_to_word,
data_ngram_counts)
elif FLAGS.mode == MODE_VALIDATION:
evaluate_model(hparams, data_set, train_dir, log, id_to_word,
data_ngram_counts)
elif FLAGS.mode == MODE_TRAIN_EVAL:
evaluate_model(hparams, data_set, train_dir, log, id_to_word,
data_ngram_counts)
elif FLAGS.mode == MODE_TEST:
evaluate_model(hparams, data_set, train_dir, log, id_to_word,
data_ngram_counts)
else:
raise NotImplementedError
if __name__ == '__main__':
tf.app.run()
|