Spaces:
Running
Running
File size: 20,308 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Loads the WikiQuestions dataset.
An example consists of question, table. Additionally, we store the processed
columns which store the entries after performing number, date and other
preprocessing as done in the baseline.
columns, column names and processed columns are split into word and number
columns.
lookup answer (or matrix) is also split into number and word lookup matrix
Author: aneelakantan (Arvind Neelakantan)
"""
from __future__ import print_function
import math
import os
import re
import numpy as np
import unicodedata as ud
import tensorflow as tf
bad_number = -200000.0 #number that is added to a corrupted table entry in a number column
def is_nan_or_inf(number):
return math.isnan(number) or math.isinf(number)
def strip_accents(s):
u = unicode(s, "utf-8")
u_new = ''.join(c for c in ud.normalize('NFKD', u) if ud.category(c) != 'Mn')
return u_new.encode("utf-8")
def correct_unicode(string):
string = strip_accents(string)
string = re.sub("\xc2\xa0", " ", string).strip()
string = re.sub("\xe2\x80\x93", "-", string).strip()
#string = re.sub(ur'[\u0300-\u036F]', "", string)
string = re.sub("‚", ",", string)
string = re.sub("…", "...", string)
#string = re.sub("[·・]", ".", string)
string = re.sub("ˆ", "^", string)
string = re.sub("˜", "~", string)
string = re.sub("‹", "<", string)
string = re.sub("›", ">", string)
#string = re.sub("[‘’´`]", "'", string)
#string = re.sub("[“â€Â«Â»]", "\"", string)
#string = re.sub("[•†‡]", "", string)
#string = re.sub("[â€â€‘–—]", "-", string)
string = re.sub(r'[\u2E00-\uFFFF]', "", string)
string = re.sub("\\s+", " ", string).strip()
return string
def simple_normalize(string):
string = correct_unicode(string)
# Citations
string = re.sub("\[(nb ?)?\d+\]", "", string)
string = re.sub("\*+$", "", string)
# Year in parenthesis
string = re.sub("\(\d* ?-? ?\d*\)", "", string)
string = re.sub("^\"(.*)\"$", "", string)
return string
def full_normalize(string):
#print "an: ", string
string = simple_normalize(string)
# Remove trailing info in brackets
string = re.sub("\[[^\]]*\]", "", string)
# Remove most unicode characters in other languages
string = re.sub(r'[\u007F-\uFFFF]', "", string.strip())
# Remove trailing info in parenthesis
string = re.sub("\([^)]*\)$", "", string.strip())
string = final_normalize(string)
# Get rid of question marks
string = re.sub("\?", "", string).strip()
# Get rid of trailing colons (usually occur in column titles)
string = re.sub("\:$", " ", string).strip()
# Get rid of slashes
string = re.sub(r"/", " ", string).strip()
string = re.sub(r"\\", " ", string).strip()
# Replace colon, slash, and dash with space
# Note: need better replacement for this when parsing time
string = re.sub(r"\:", " ", string).strip()
string = re.sub("/", " ", string).strip()
string = re.sub("-", " ", string).strip()
# Convert empty strings to UNK
# Important to do this last or near last
if not string:
string = "UNK"
return string
def final_normalize(string):
# Remove leading and trailing whitespace
string = re.sub("\\s+", " ", string).strip()
# Convert entirely to lowercase
string = string.lower()
# Get rid of strangely escaped newline characters
string = re.sub("\\\\n", " ", string).strip()
# Get rid of quotation marks
string = re.sub(r"\"", "", string).strip()
string = re.sub(r"\'", "", string).strip()
string = re.sub(r"`", "", string).strip()
# Get rid of *
string = re.sub("\*", "", string).strip()
return string
def is_number(x):
try:
f = float(x)
return not is_nan_or_inf(f)
except ValueError:
return False
except TypeError:
return False
class WikiExample(object):
def __init__(self, id, question, answer, table_key):
self.question_id = id
self.question = question
self.answer = answer
self.table_key = table_key
self.lookup_matrix = []
self.is_bad_example = False
self.is_word_lookup = False
self.is_ambiguous_word_lookup = False
self.is_number_lookup = False
self.is_number_calc = False
self.is_unknown_answer = False
class TableInfo(object):
def __init__(self, word_columns, word_column_names, word_column_indices,
number_columns, number_column_names, number_column_indices,
processed_word_columns, processed_number_columns, orig_columns):
self.word_columns = word_columns
self.word_column_names = word_column_names
self.word_column_indices = word_column_indices
self.number_columns = number_columns
self.number_column_names = number_column_names
self.number_column_indices = number_column_indices
self.processed_word_columns = processed_word_columns
self.processed_number_columns = processed_number_columns
self.orig_columns = orig_columns
class WikiQuestionLoader(object):
def __init__(self, data_name, root_folder):
self.root_folder = root_folder
self.data_folder = os.path.join(self.root_folder, "data")
self.examples = []
self.data_name = data_name
def num_questions(self):
return len(self.examples)
def load_qa(self):
data_source = os.path.join(self.data_folder, self.data_name)
f = tf.gfile.GFile(data_source, "r")
id_regex = re.compile("\(id ([^\)]*)\)")
for line in f:
id_match = id_regex.search(line)
id = id_match.group(1)
self.examples.append(id)
def load(self):
self.load_qa()
def is_date(word):
if (not (bool(re.search("[a-z0-9]", word, re.IGNORECASE)))):
return False
if (len(word) != 10):
return False
if (word[4] != "-"):
return False
if (word[7] != "-"):
return False
for i in range(len(word)):
if (not (word[i] == "X" or word[i] == "x" or word[i] == "-" or re.search(
"[0-9]", word[i]))):
return False
return True
class WikiQuestionGenerator(object):
def __init__(self, train_name, dev_name, test_name, root_folder):
self.train_name = train_name
self.dev_name = dev_name
self.test_name = test_name
self.train_loader = WikiQuestionLoader(train_name, root_folder)
self.dev_loader = WikiQuestionLoader(dev_name, root_folder)
self.test_loader = WikiQuestionLoader(test_name, root_folder)
self.bad_examples = 0
self.root_folder = root_folder
self.data_folder = os.path.join(self.root_folder, "annotated/data")
self.annotated_examples = {}
self.annotated_tables = {}
self.annotated_word_reject = {}
self.annotated_word_reject["-lrb-"] = 1
self.annotated_word_reject["-rrb-"] = 1
self.annotated_word_reject["UNK"] = 1
def is_money(self, word):
if (not (bool(re.search("[a-z0-9]", word, re.IGNORECASE)))):
return False
for i in range(len(word)):
if (not (word[i] == "E" or word[i] == "." or re.search("[0-9]",
word[i]))):
return False
return True
def remove_consecutive(self, ner_tags, ner_values):
for i in range(len(ner_tags)):
if ((ner_tags[i] == "NUMBER" or ner_tags[i] == "MONEY" or
ner_tags[i] == "PERCENT" or ner_tags[i] == "DATE") and
i + 1 < len(ner_tags) and ner_tags[i] == ner_tags[i + 1] and
ner_values[i] == ner_values[i + 1] and ner_values[i] != ""):
word = ner_values[i]
word = word.replace(">", "").replace("<", "").replace("=", "").replace(
"%", "").replace("~", "").replace("$", "").replace("£", "").replace(
"€", "")
if (re.search("[A-Z]", word) and not (is_date(word)) and not (
self.is_money(word))):
ner_values[i] = "A"
else:
ner_values[i] = ","
return ner_tags, ner_values
def pre_process_sentence(self, tokens, ner_tags, ner_values):
sentence = []
tokens = tokens.split("|")
ner_tags = ner_tags.split("|")
ner_values = ner_values.split("|")
ner_tags, ner_values = self.remove_consecutive(ner_tags, ner_values)
#print "old: ", tokens
for i in range(len(tokens)):
word = tokens[i]
if (ner_values[i] != "" and
(ner_tags[i] == "NUMBER" or ner_tags[i] == "MONEY" or
ner_tags[i] == "PERCENT" or ner_tags[i] == "DATE")):
word = ner_values[i]
word = word.replace(">", "").replace("<", "").replace("=", "").replace(
"%", "").replace("~", "").replace("$", "").replace("£", "").replace(
"€", "")
if (re.search("[A-Z]", word) and not (is_date(word)) and not (
self.is_money(word))):
word = tokens[i]
if (is_number(ner_values[i])):
word = float(ner_values[i])
elif (is_number(word)):
word = float(word)
if (tokens[i] == "score"):
word = "score"
if (is_number(word)):
word = float(word)
if (not (self.annotated_word_reject.has_key(word))):
if (is_number(word) or is_date(word) or self.is_money(word)):
sentence.append(word)
else:
word = full_normalize(word)
if (not (self.annotated_word_reject.has_key(word)) and
bool(re.search("[a-z0-9]", word, re.IGNORECASE))):
m = re.search(",", word)
sentence.append(word.replace(",", ""))
if (len(sentence) == 0):
sentence.append("UNK")
return sentence
def load_annotated_data(self, in_file):
self.annotated_examples = {}
self.annotated_tables = {}
f = tf.gfile.GFile(in_file, "r")
counter = 0
for line in f:
if (counter > 0):
line = line.strip()
(question_id, utterance, context, target_value, tokens, lemma_tokens,
pos_tags, ner_tags, ner_values, target_canon) = line.split("\t")
question = self.pre_process_sentence(tokens, ner_tags, ner_values)
target_canon = target_canon.split("|")
self.annotated_examples[question_id] = WikiExample(
question_id, question, target_canon, context)
self.annotated_tables[context] = []
counter += 1
print("Annotated examples loaded ", len(self.annotated_examples))
f.close()
def is_number_column(self, a):
for w in a:
if (len(w) != 1):
return False
if (not (is_number(w[0]))):
return False
return True
def convert_table(self, table):
answer = []
for i in range(len(table)):
temp = []
for j in range(len(table[i])):
temp.append(" ".join([str(w) for w in table[i][j]]))
answer.append(temp)
return answer
def load_annotated_tables(self):
for table in self.annotated_tables.keys():
annotated_table = table.replace("csv", "annotated")
orig_columns = []
processed_columns = []
f = tf.gfile.GFile(os.path.join(self.root_folder, annotated_table), "r")
counter = 0
for line in f:
if (counter > 0):
line = line.strip()
line = line + "\t" * (13 - len(line.split("\t")))
(row, col, read_id, content, tokens, lemma_tokens, pos_tags, ner_tags,
ner_values, number, date, num2, read_list) = line.split("\t")
counter += 1
f.close()
max_row = int(row)
max_col = int(col)
for i in range(max_col + 1):
orig_columns.append([])
processed_columns.append([])
for j in range(max_row + 1):
orig_columns[i].append(bad_number)
processed_columns[i].append(bad_number)
#print orig_columns
f = tf.gfile.GFile(os.path.join(self.root_folder, annotated_table), "r")
counter = 0
column_names = []
for line in f:
if (counter > 0):
line = line.strip()
line = line + "\t" * (13 - len(line.split("\t")))
(row, col, read_id, content, tokens, lemma_tokens, pos_tags, ner_tags,
ner_values, number, date, num2, read_list) = line.split("\t")
entry = self.pre_process_sentence(tokens, ner_tags, ner_values)
if (row == "-1"):
column_names.append(entry)
else:
orig_columns[int(col)][int(row)] = entry
if (len(entry) == 1 and is_number(entry[0])):
processed_columns[int(col)][int(row)] = float(entry[0])
else:
for single_entry in entry:
if (is_number(single_entry)):
processed_columns[int(col)][int(row)] = float(single_entry)
break
nt = ner_tags.split("|")
nv = ner_values.split("|")
for i_entry in range(len(tokens.split("|"))):
if (nt[i_entry] == "DATE" and
is_number(nv[i_entry].replace("-", "").replace("X", ""))):
processed_columns[int(col)][int(row)] = float(nv[
i_entry].replace("-", "").replace("X", ""))
#processed_columns[int(col)][int(row)] = float(nv[i_entry])
if (len(entry) == 1 and (is_number(entry[0]) or is_date(entry[0]) or
self.is_money(entry[0]))):
if (len(entry) == 1 and not (is_number(entry[0])) and
is_date(entry[0])):
entry[0] = entry[0].replace("X", "x")
counter += 1
word_columns = []
processed_word_columns = []
word_column_names = []
word_column_indices = []
number_columns = []
processed_number_columns = []
number_column_names = []
number_column_indices = []
for i in range(max_col + 1):
if (self.is_number_column(orig_columns[i])):
number_column_indices.append(i)
number_column_names.append(column_names[i])
temp = []
for w in orig_columns[i]:
if (is_number(w[0])):
temp.append(w[0])
number_columns.append(temp)
processed_number_columns.append(processed_columns[i])
else:
word_column_indices.append(i)
word_column_names.append(column_names[i])
word_columns.append(orig_columns[i])
processed_word_columns.append(processed_columns[i])
table_info = TableInfo(
word_columns, word_column_names, word_column_indices, number_columns,
number_column_names, number_column_indices, processed_word_columns,
processed_number_columns, orig_columns)
self.annotated_tables[table] = table_info
f.close()
def answer_classification(self):
lookup_questions = 0
number_lookup_questions = 0
word_lookup_questions = 0
ambiguous_lookup_questions = 0
number_questions = 0
bad_questions = 0
ice_bad_questions = 0
tot = 0
got = 0
ice = {}
with tf.gfile.GFile(
self.root_folder + "/arvind-with-norms-2.tsv", mode="r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if (not (self.annotated_examples.has_key(line.split("\t")[0]))):
continue
if (len(line.split("\t")) == 4):
line = line + "\t" * (5 - len(line.split("\t")))
if (not (is_number(line.split("\t")[2]))):
ice_bad_questions += 1
(example_id, ans_index, ans_raw, process_answer,
matched_cells) = line.split("\t")
if (ice.has_key(example_id)):
ice[example_id].append(line.split("\t"))
else:
ice[example_id] = [line.split("\t")]
for q_id in self.annotated_examples.keys():
tot += 1
example = self.annotated_examples[q_id]
table_info = self.annotated_tables[example.table_key]
# Figure out if the answer is numerical or lookup
n_cols = len(table_info.orig_columns)
n_rows = len(table_info.orig_columns[0])
example.lookup_matrix = np.zeros((n_rows, n_cols))
exact_matches = {}
for (example_id, ans_index, ans_raw, process_answer,
matched_cells) in ice[q_id]:
for match_cell in matched_cells.split("|"):
if (len(match_cell.split(",")) == 2):
(row, col) = match_cell.split(",")
row = int(row)
col = int(col)
if (row >= 0):
exact_matches[ans_index] = 1
answer_is_in_table = len(exact_matches) == len(example.answer)
if (answer_is_in_table):
for (example_id, ans_index, ans_raw, process_answer,
matched_cells) in ice[q_id]:
for match_cell in matched_cells.split("|"):
if (len(match_cell.split(",")) == 2):
(row, col) = match_cell.split(",")
row = int(row)
col = int(col)
example.lookup_matrix[row, col] = float(ans_index) + 1.0
example.lookup_number_answer = 0.0
if (answer_is_in_table):
lookup_questions += 1
if len(example.answer) == 1 and is_number(example.answer[0]):
example.number_answer = float(example.answer[0])
number_lookup_questions += 1
example.is_number_lookup = True
else:
#print "word lookup"
example.calc_answer = example.number_answer = 0.0
word_lookup_questions += 1
example.is_word_lookup = True
else:
if (len(example.answer) == 1 and is_number(example.answer[0])):
example.number_answer = example.answer[0]
example.is_number_calc = True
else:
bad_questions += 1
example.is_bad_example = True
example.is_unknown_answer = True
example.is_lookup = example.is_word_lookup or example.is_number_lookup
if not example.is_word_lookup and not example.is_bad_example:
number_questions += 1
example.calc_answer = example.answer[0]
example.lookup_number_answer = example.calc_answer
# Split up the lookup matrix into word part and number part
number_column_indices = table_info.number_column_indices
word_column_indices = table_info.word_column_indices
example.word_columns = table_info.word_columns
example.number_columns = table_info.number_columns
example.word_column_names = table_info.word_column_names
example.processed_number_columns = table_info.processed_number_columns
example.processed_word_columns = table_info.processed_word_columns
example.number_column_names = table_info.number_column_names
example.number_lookup_matrix = example.lookup_matrix[:,
number_column_indices]
example.word_lookup_matrix = example.lookup_matrix[:, word_column_indices]
def load(self):
train_data = []
dev_data = []
test_data = []
self.load_annotated_data(
os.path.join(self.data_folder, "training.annotated"))
self.load_annotated_tables()
self.answer_classification()
self.train_loader.load()
self.dev_loader.load()
for i in range(self.train_loader.num_questions()):
example = self.train_loader.examples[i]
example = self.annotated_examples[example]
train_data.append(example)
for i in range(self.dev_loader.num_questions()):
example = self.dev_loader.examples[i]
dev_data.append(self.annotated_examples[example])
self.load_annotated_data(
os.path.join(self.data_folder, "pristine-unseen-tables.annotated"))
self.load_annotated_tables()
self.answer_classification()
self.test_loader.load()
for i in range(self.test_loader.num_questions()):
example = self.test_loader.examples[i]
test_data.append(self.annotated_examples[example])
return train_data, dev_data, test_data
|