File size: 10,967 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Perspective Transformer Layer Implementation.

Transform the volume based on 4 x 4 perspective projection matrix.

Reference:
(1) "Perspective Transformer Nets: Perspective Transformer Nets:
Learning Single-View 3D Object Reconstruction without 3D Supervision."
Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, Honglak Lee. In NIPS 2016
https://papers.nips.cc/paper/6206-perspective-transformer-nets-learning-single-view-3d-object-reconstruction-without-3d-supervision.pdf

(2) Official implementation in Torch: https://github.com/xcyan/ptnbhwd

(3) 2D Transformer implementation in TF:
github.com/tensorflow/models/tree/master/research/transformer

"""

import tensorflow as tf


def transformer(voxels,
                theta,
                out_size,
                z_near,
                z_far,
                name='PerspectiveTransformer'):
  """Perspective Transformer Layer.

  Args:
    voxels: A tensor of size [num_batch, depth, height, width, num_channels].
      It is the output of a deconv/upsampling conv network (tf.float32).
    theta: A tensor of size [num_batch, 16].
      It is the inverse camera transformation matrix (tf.float32).
    out_size: A tuple representing the size of output of
      transformer layer (float).
    z_near: A number representing the near clipping plane (float).
    z_far: A number representing the far clipping plane (float).

  Returns:
    A transformed tensor (tf.float32).

  """
  def _repeat(x, n_repeats):
    with tf.variable_scope('_repeat'):
      rep = tf.transpose(
          tf.expand_dims(tf.ones(shape=tf.stack([
              n_repeats,
          ])), 1), [1, 0])
      rep = tf.to_int32(rep)
      x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
      return tf.reshape(x, [-1])

  def _interpolate(im, x, y, z, out_size):
    """Bilinear interploation layer.

    Args:
      im: A 5D tensor of size [num_batch, depth, height, width, num_channels].
        It is the input volume for the transformation layer (tf.float32).
      x: A tensor of size [num_batch, out_depth, out_height, out_width]
        representing the inverse coordinate mapping for x (tf.float32).
      y: A tensor of size [num_batch, out_depth, out_height, out_width]
        representing the inverse coordinate mapping for y (tf.float32).
      z: A tensor of size [num_batch, out_depth, out_height, out_width]
        representing the inverse coordinate mapping for z (tf.float32).
      out_size: A tuple representing the output size of transformation layer
        (float).

    Returns:
      A transformed tensor (tf.float32).

    """
    with tf.variable_scope('_interpolate'):
      num_batch = im.get_shape().as_list()[0]
      depth = im.get_shape().as_list()[1]
      height = im.get_shape().as_list()[2]
      width = im.get_shape().as_list()[3]
      channels = im.get_shape().as_list()[4]

      x = tf.to_float(x)
      y = tf.to_float(y)
      z = tf.to_float(z)
      depth_f = tf.to_float(depth)
      height_f = tf.to_float(height)
      width_f = tf.to_float(width)
      # Number of disparity interpolated.
      out_depth = out_size[0]
      out_height = out_size[1]
      out_width = out_size[2]
      zero = tf.zeros([], dtype='int32')
      # 0 <= z < depth, 0 <= y < height & 0 <= x < width.
      max_z = tf.to_int32(tf.shape(im)[1] - 1)
      max_y = tf.to_int32(tf.shape(im)[2] - 1)
      max_x = tf.to_int32(tf.shape(im)[3] - 1)

      # Converts scale indices from [-1, 1] to [0, width/height/depth].
      x = (x + 1.0) * (width_f) / 2.0
      y = (y + 1.0) * (height_f) / 2.0
      z = (z + 1.0) * (depth_f) / 2.0

      x0 = tf.to_int32(tf.floor(x))
      x1 = x0 + 1
      y0 = tf.to_int32(tf.floor(y))
      y1 = y0 + 1
      z0 = tf.to_int32(tf.floor(z))
      z1 = z0 + 1

      x0_clip = tf.clip_by_value(x0, zero, max_x)
      x1_clip = tf.clip_by_value(x1, zero, max_x)
      y0_clip = tf.clip_by_value(y0, zero, max_y)
      y1_clip = tf.clip_by_value(y1, zero, max_y)
      z0_clip = tf.clip_by_value(z0, zero, max_z)
      z1_clip = tf.clip_by_value(z1, zero, max_z)
      dim3 = width
      dim2 = width * height
      dim1 = width * height * depth
      base = _repeat(
          tf.range(num_batch) * dim1, out_depth * out_height * out_width)
      base_z0_y0 = base + z0_clip * dim2 + y0_clip * dim3
      base_z0_y1 = base + z0_clip * dim2 + y1_clip * dim3
      base_z1_y0 = base + z1_clip * dim2 + y0_clip * dim3
      base_z1_y1 = base + z1_clip * dim2 + y1_clip * dim3

      idx_z0_y0_x0 = base_z0_y0 + x0_clip
      idx_z0_y0_x1 = base_z0_y0 + x1_clip
      idx_z0_y1_x0 = base_z0_y1 + x0_clip
      idx_z0_y1_x1 = base_z0_y1 + x1_clip
      idx_z1_y0_x0 = base_z1_y0 + x0_clip
      idx_z1_y0_x1 = base_z1_y0 + x1_clip
      idx_z1_y1_x0 = base_z1_y1 + x0_clip
      idx_z1_y1_x1 = base_z1_y1 + x1_clip

      # Use indices to lookup pixels in the flat image and restore
      # channels dim
      im_flat = tf.reshape(im, tf.stack([-1, channels]))
      im_flat = tf.to_float(im_flat)
      i_z0_y0_x0 = tf.gather(im_flat, idx_z0_y0_x0)
      i_z0_y0_x1 = tf.gather(im_flat, idx_z0_y0_x1)
      i_z0_y1_x0 = tf.gather(im_flat, idx_z0_y1_x0)
      i_z0_y1_x1 = tf.gather(im_flat, idx_z0_y1_x1)
      i_z1_y0_x0 = tf.gather(im_flat, idx_z1_y0_x0)
      i_z1_y0_x1 = tf.gather(im_flat, idx_z1_y0_x1)
      i_z1_y1_x0 = tf.gather(im_flat, idx_z1_y1_x0)
      i_z1_y1_x1 = tf.gather(im_flat, idx_z1_y1_x1)

      # Finally calculate interpolated values.
      x0_f = tf.to_float(x0)
      x1_f = tf.to_float(x1)
      y0_f = tf.to_float(y0)
      y1_f = tf.to_float(y1)
      z0_f = tf.to_float(z0)
      z1_f = tf.to_float(z1)
      # Check the out-of-boundary case.
      x0_valid = tf.to_float(
          tf.less_equal(x0, max_x) & tf.greater_equal(x0, 0))
      x1_valid = tf.to_float(
          tf.less_equal(x1, max_x) & tf.greater_equal(x1, 0))
      y0_valid = tf.to_float(
          tf.less_equal(y0, max_y) & tf.greater_equal(y0, 0))
      y1_valid = tf.to_float(
          tf.less_equal(y1, max_y) & tf.greater_equal(y1, 0))
      z0_valid = tf.to_float(
          tf.less_equal(z0, max_z) & tf.greater_equal(z0, 0))
      z1_valid = tf.to_float(
          tf.less_equal(z1, max_z) & tf.greater_equal(z1, 0))

      w_z0_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) *
                                   (z1_f - z) * x1_valid * y1_valid * z1_valid),
                                  1)
      w_z0_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) *
                                   (z1_f - z) * x0_valid * y1_valid * z1_valid),
                                  1)
      w_z0_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) *
                                   (z1_f - z) * x1_valid * y0_valid * z1_valid),
                                  1)
      w_z0_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) *
                                   (z1_f - z) * x0_valid * y0_valid * z1_valid),
                                  1)
      w_z1_y0_x0 = tf.expand_dims(((x1_f - x) * (y1_f - y) *
                                   (z - z0_f) * x1_valid * y1_valid * z0_valid),
                                  1)
      w_z1_y0_x1 = tf.expand_dims(((x - x0_f) * (y1_f - y) *
                                   (z - z0_f) * x0_valid * y1_valid * z0_valid),
                                  1)
      w_z1_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) *
                                   (z - z0_f) * x1_valid * y0_valid * z0_valid),
                                  1)
      w_z1_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) *
                                   (z - z0_f) * x0_valid * y0_valid * z0_valid),
                                  1)

      output = tf.add_n([
          w_z0_y0_x0 * i_z0_y0_x0, w_z0_y0_x1 * i_z0_y0_x1,
          w_z0_y1_x0 * i_z0_y1_x0, w_z0_y1_x1 * i_z0_y1_x1,
          w_z1_y0_x0 * i_z1_y0_x0, w_z1_y0_x1 * i_z1_y0_x1,
          w_z1_y1_x0 * i_z1_y1_x0, w_z1_y1_x1 * i_z1_y1_x1
      ])
      return output

  def _meshgrid(depth, height, width, z_near, z_far):
    with tf.variable_scope('_meshgrid'):
      x_t = tf.reshape(
          tf.tile(tf.linspace(-1.0, 1.0, width), [height * depth]),
          [depth, height, width])
      y_t = tf.reshape(
          tf.tile(tf.linspace(-1.0, 1.0, height), [width * depth]),
          [depth, width, height])
      y_t = tf.transpose(y_t, [0, 2, 1])
      sample_grid = tf.tile(
          tf.linspace(float(z_near), float(z_far), depth), [width * height])
      z_t = tf.reshape(sample_grid, [height, width, depth])
      z_t = tf.transpose(z_t, [2, 0, 1])

      z_t = 1 / z_t
      d_t = 1 / z_t
      x_t /= z_t
      y_t /= z_t

      x_t_flat = tf.reshape(x_t, (1, -1))
      y_t_flat = tf.reshape(y_t, (1, -1))
      d_t_flat = tf.reshape(d_t, (1, -1))

      ones = tf.ones_like(x_t_flat)
      grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0)
      return grid

  def _transform(theta, input_dim, out_size, z_near, z_far):
    with tf.variable_scope('_transform'):
      num_batch = input_dim.get_shape().as_list()[0]
      num_channels = input_dim.get_shape().as_list()[4]
      theta = tf.reshape(theta, (-1, 4, 4))
      theta = tf.cast(theta, 'float32')

      out_depth = out_size[0]
      out_height = out_size[1]
      out_width = out_size[2]
      grid = _meshgrid(out_depth, out_height, out_width, z_near, z_far)
      grid = tf.expand_dims(grid, 0)
      grid = tf.reshape(grid, [-1])
      grid = tf.tile(grid, tf.stack([num_batch]))
      grid = tf.reshape(grid, tf.stack([num_batch, 4, -1]))

      # Transform A x (x_t', y_t', 1, d_t)^T -> (x_s, y_s, z_s, 1).
      t_g = tf.matmul(theta, grid)
      z_s = tf.slice(t_g, [0, 0, 0], [-1, 1, -1])
      y_s = tf.slice(t_g, [0, 1, 0], [-1, 1, -1])
      x_s = tf.slice(t_g, [0, 2, 0], [-1, 1, -1])

      z_s_flat = tf.reshape(z_s, [-1])
      y_s_flat = tf.reshape(y_s, [-1])
      x_s_flat = tf.reshape(x_s, [-1])

      input_transformed = _interpolate(input_dim, x_s_flat, y_s_flat, z_s_flat,
                                       out_size)

      output = tf.reshape(
          input_transformed,
          tf.stack([num_batch, out_depth, out_height, out_width, num_channels]))

      return output

  with tf.variable_scope(name):
    output = _transform(theta, voxels, out_size, z_near, z_far)
    return output