Spaces:
Running
Running
File size: 9,085 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains training plan for the Im2vox model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
from tensorflow import app
import model_ptn
flags = tf.app.flags
slim = tf.contrib.slim
flags.DEFINE_string('inp_dir',
'',
'Directory path containing the input data (tfrecords).')
flags.DEFINE_string(
'dataset_name', 'shapenet_chair',
'Dataset name that is to be used for training and evaluation.')
flags.DEFINE_integer('z_dim', 512, '')
flags.DEFINE_integer('f_dim', 64, '')
flags.DEFINE_integer('fc_dim', 1024, '')
flags.DEFINE_integer('num_views', 24, 'Num of viewpoints in the input data.')
flags.DEFINE_integer('image_size', 64,
'Input images dimension (pixels) - width & height.')
flags.DEFINE_integer('vox_size', 32, 'Voxel prediction dimension.')
flags.DEFINE_integer('step_size', 24, 'Steps to take in rotation to fetch viewpoints.')
flags.DEFINE_integer('batch_size', 6, 'Batch size while training.')
flags.DEFINE_float('focal_length', 0.866, 'Focal length parameter used in perspective projection.')
flags.DEFINE_float('focal_range', 1.732, 'Focal length parameter used in perspective projection.')
flags.DEFINE_string('encoder_name', 'ptn_encoder',
'Name of the encoder network being used.')
flags.DEFINE_string('decoder_name', 'ptn_vox_decoder',
'Name of the decoder network being used.')
flags.DEFINE_string('projector_name', 'perspective_projector',
'Name of the projector network being used.')
# Save options
flags.DEFINE_string('checkpoint_dir', '/tmp/ptn_train/',
'Directory path for saving trained models and other data.')
flags.DEFINE_string('model_name', 'ptn_finetune',
'Name of the model used in naming the TF job. Must be different for each run.')
flags.DEFINE_string('init_model', None,
'Checkpoint path of the model to initialize with.')
flags.DEFINE_integer('save_every', 1000,
'Average period of steps after which we save a model.')
# Optimization
flags.DEFINE_float('proj_weight', 10, 'Weighting factor for projection loss.')
flags.DEFINE_float('volume_weight', 0, 'Weighting factor for volume loss.')
flags.DEFINE_float('viewpoint_weight', 1, 'Weighting factor for viewpoint loss.')
flags.DEFINE_float('learning_rate', 0.0001, 'Learning rate.')
flags.DEFINE_float('weight_decay', 0.001, 'Weight decay parameter while training.')
flags.DEFINE_float('clip_gradient_norm', 0, 'Gradient clim norm, leave 0 if no gradient clipping.')
flags.DEFINE_integer('max_number_of_steps', 10000, 'Maximum number of steps for training.')
# Summary
flags.DEFINE_integer('save_summaries_secs', 15, 'Seconds interval for dumping TF summaries.')
flags.DEFINE_integer('save_interval_secs', 60 * 5, 'Seconds interval to save models.')
# Scheduling
flags.DEFINE_string('master', '', 'The address of the tensorflow master')
flags.DEFINE_bool('sync_replicas', False, 'Whether to sync gradients between replicas for optimizer.')
flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas (train tasks).')
flags.DEFINE_integer('backup_workers', 0, 'Number of backup workers.')
flags.DEFINE_integer('ps_tasks', 0, 'Number of ps tasks.')
flags.DEFINE_integer('task', 0,
'Task identifier flag to be set for each task running in distributed manner. Task number 0 '
'will be chosen as the chief.')
FLAGS = flags.FLAGS
def main(_):
train_dir = os.path.join(FLAGS.checkpoint_dir, FLAGS.model_name, 'train')
save_image_dir = os.path.join(train_dir, 'images')
if not os.path.exists(train_dir):
os.makedirs(train_dir)
if not os.path.exists(save_image_dir):
os.makedirs(save_image_dir)
g = tf.Graph()
with g.as_default():
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
global_step = slim.get_or_create_global_step()
###########
## model ##
###########
model = model_ptn.model_PTN(FLAGS)
##########
## data ##
##########
train_data = model.get_inputs(
FLAGS.inp_dir,
FLAGS.dataset_name,
'train',
FLAGS.batch_size,
FLAGS.image_size,
FLAGS.vox_size,
is_training=True)
inputs = model.preprocess(train_data, FLAGS.step_size)
##############
## model_fn ##
##############
model_fn = model.get_model_fn(
is_training=True, reuse=False, run_projection=True)
outputs = model_fn(inputs)
##################
## train_scopes ##
##################
if FLAGS.init_model:
train_scopes = ['decoder']
init_scopes = ['encoder']
else:
train_scopes = ['encoder', 'decoder']
##########
## loss ##
##########
task_loss = model.get_loss(inputs, outputs)
regularization_loss = model.get_regularization_loss(train_scopes)
loss = task_loss + regularization_loss
###############
## optimizer ##
###############
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
if FLAGS.sync_replicas:
optimizer = tf.train.SyncReplicasOptimizer(
optimizer,
replicas_to_aggregate=FLAGS.workers_replicas - FLAGS.backup_workers,
total_num_replicas=FLAGS.worker_replicas)
##############
## train_op ##
##############
train_op = model.get_train_op_for_scope(loss, optimizer, train_scopes)
###########
## saver ##
###########
saver = tf.train.Saver(max_to_keep=np.minimum(5,
FLAGS.worker_replicas + 1))
if FLAGS.task == 0:
params = FLAGS
params.batch_size = params.num_views
params.step_size = 1
model.set_params(params)
val_data = model.get_inputs(
params.inp_dir,
params.dataset_name,
'val',
params.batch_size,
params.image_size,
params.vox_size,
is_training=False)
val_inputs = model.preprocess(val_data, params.step_size)
# Note: don't compute loss here
reused_model_fn = model.get_model_fn(is_training=False, reuse=True)
val_outputs = reused_model_fn(val_inputs)
with tf.device(tf.DeviceSpec(device_type='CPU')):
vis_input_images = val_inputs['images_1'] * 255.0
vis_gt_projs = (val_outputs['masks_1'] * (-1) + 1) * 255.0
vis_pred_projs = (val_outputs['projs_1'] * (-1) + 1) * 255.0
vis_gt_projs = tf.concat([vis_gt_projs] * 3, axis=3)
vis_pred_projs = tf.concat([vis_pred_projs] * 3, axis=3)
# rescale
new_size = [FLAGS.image_size] * 2
vis_gt_projs = tf.image.resize_nearest_neighbor(
vis_gt_projs, new_size)
vis_pred_projs = tf.image.resize_nearest_neighbor(
vis_pred_projs, new_size)
# flip
# vis_gt_projs = utils.image_flipud(vis_gt_projs)
# vis_pred_projs = utils.image_flipud(vis_pred_projs)
# vis_gt_projs is of shape [batch, height, width, channels]
write_disk_op = model.write_disk_grid(
global_step=global_step,
log_dir=save_image_dir,
input_images=vis_input_images,
gt_projs=vis_gt_projs,
pred_projs=vis_pred_projs,
input_voxels=val_inputs['voxels'],
output_voxels=val_outputs['voxels_1'])
with tf.control_dependencies([write_disk_op]):
train_op = tf.identity(train_op)
#############
## init_fn ##
#############
if FLAGS.init_model:
init_fn = model.get_init_fn(init_scopes)
else:
init_fn = None
##############
## training ##
##############
slim.learning.train(
train_op=train_op,
logdir=train_dir,
init_fn=init_fn,
master=FLAGS.master,
is_chief=(FLAGS.task == 0),
number_of_steps=FLAGS.max_number_of_steps,
saver=saver,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs)
if __name__ == '__main__':
app.run()
|