Spaces:
Running
Running
File size: 6,852 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import random
import sys
import os
import numpy as np
import tensorflow as tf
import rebar
import datasets
import logger as L
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
gfile = tf.gfile
tf.app.flags.DEFINE_string("working_dir", "/tmp/rebar",
"""Directory where to save data, write logs, etc.""")
tf.app.flags.DEFINE_string('hparams', '',
'''Comma separated list of name=value pairs.''')
tf.app.flags.DEFINE_integer('eval_freq', 20,
'''How often to run the evaluation step.''')
FLAGS = tf.flags.FLAGS
def manual_scalar_summary(name, value):
value = tf.Summary.Value(tag=name, simple_value=value)
summary_str = tf.Summary(value=[value])
return summary_str
def eval(sbn, eval_xs, n_samples=100, batch_size=5):
n = eval_xs.shape[0]
i = 0
res = []
while i < n:
batch_xs = eval_xs[i:min(i+batch_size, n)]
res.append(sbn.partial_eval(batch_xs, n_samples))
i += batch_size
res = np.mean(res, axis=0)
return res
def train(sbn, train_xs, valid_xs, test_xs, training_steps, debug=False):
hparams = sorted(sbn.hparams.values().items())
hparams = (map(str, x) for x in hparams)
hparams = ('_'.join(x) for x in hparams)
hparams_str = '.'.join(hparams)
logger = L.Logger()
# Create the experiment name from the hparams
experiment_name = ([str(sbn.hparams.n_hidden) for i in xrange(sbn.hparams.n_layer)] +
[str(sbn.hparams.n_input)])
if sbn.hparams.nonlinear:
experiment_name = '~'.join(experiment_name)
else:
experiment_name = '-'.join(experiment_name)
experiment_name = 'SBN_%s' % experiment_name
rowkey = {'experiment': experiment_name,
'model': hparams_str}
# Create summary writer
summ_dir = os.path.join(FLAGS.working_dir, hparams_str)
summary_writer = tf.summary.FileWriter(
summ_dir, flush_secs=15, max_queue=100)
sv = tf.train.Supervisor(logdir=os.path.join(
FLAGS.working_dir, hparams_str),
save_summaries_secs=0,
save_model_secs=1200,
summary_op=None,
recovery_wait_secs=30,
global_step=sbn.global_step)
with sv.managed_session() as sess:
# Dump hparams to file
with gfile.Open(os.path.join(FLAGS.working_dir,
hparams_str,
'hparams.json'),
'w') as out:
json.dump(sbn.hparams.values(), out)
sbn.initialize(sess)
batch_size = sbn.hparams.batch_size
scores = []
n = train_xs.shape[0]
index = range(n)
while not sv.should_stop():
lHats = []
grad_variances = []
temperatures = []
random.shuffle(index)
i = 0
while i < n:
batch_index = index[i:min(i+batch_size, n)]
batch_xs = train_xs[batch_index, :]
if sbn.hparams.dynamic_b:
# Dynamically binarize the batch data
batch_xs = (np.random.rand(*batch_xs.shape) < batch_xs).astype(float)
lHat, grad_variance, step, temperature = sbn.partial_fit(batch_xs,
sbn.hparams.n_samples)
if debug:
print(i, lHat)
if i > 100:
return
lHats.append(lHat)
grad_variances.append(grad_variance)
temperatures.append(temperature)
i += batch_size
grad_variances = np.log(np.mean(grad_variances, axis=0)).tolist()
summary_strings = []
if isinstance(grad_variances, list):
grad_variances = dict(zip([k for (k, v) in sbn.losses], map(float, grad_variances)))
rowkey['step'] = step
logger.log(rowkey, {'step': step,
'train': np.mean(lHats, axis=0)[0],
'grad_variances': grad_variances,
'temperature': np.mean(temperatures), })
grad_variances = '\n'.join(map(str, sorted(grad_variances.iteritems())))
else:
rowkey['step'] = step
logger.log(rowkey, {'step': step,
'train': np.mean(lHats, axis=0)[0],
'grad_variance': grad_variances,
'temperature': np.mean(temperatures), })
summary_strings.append(manual_scalar_summary("log grad variance", grad_variances))
print('Step %d: %s\n%s' % (step, str(np.mean(lHats, axis=0)), str(grad_variances)))
# Every few epochs compute test and validation scores
epoch = int(step / (train_xs.shape[0] / sbn.hparams.batch_size))
if epoch % FLAGS.eval_freq == 0:
valid_res = eval(sbn, valid_xs)
test_res= eval(sbn, test_xs)
print('\nValid %d: %s' % (step, str(valid_res)))
print('Test %d: %s\n' % (step, str(test_res)))
logger.log(rowkey, {'step': step,
'valid': valid_res[0],
'test': test_res[0]})
logger.flush() # Flush infrequently
# Create summaries
summary_strings.extend([
manual_scalar_summary("Train ELBO", np.mean(lHats, axis=0)[0]),
manual_scalar_summary("Temperature", np.mean(temperatures)),
])
for summ_str in summary_strings:
summary_writer.add_summary(summ_str, global_step=step)
summary_writer.flush()
sys.stdout.flush()
scores.append(np.mean(lHats, axis=0))
if step > training_steps:
break
return scores
def main():
# Parse hyperparams
hparams = rebar.default_hparams
hparams.parse(FLAGS.hparams)
print(hparams.values())
train_xs, valid_xs, test_xs = datasets.load_data(hparams)
mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training
training_steps = 2000000
model = getattr(rebar, hparams.model)
sbn = model(hparams, mean_xs=mean_xs)
scores = train(sbn, train_xs, valid_xs, test_xs,
training_steps=training_steps, debug=False)
if __name__ == '__main__':
main()
|