Spaces:
Running
Running
File size: 18,567 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines convolutional model graph for Seq2Species.
Builds TensorFlow computation graph for predicting the given taxonomic target
labels from short reads of DNA using convolutional filters, followed by
fully-connected layers and a softmax output layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import tensorflow as tf
import input as seq2species_input
import seq2label_utils
class ConvolutionalNet(object):
"""Class to build and store the model's computational graph and operations.
Attributes:
read_length: int; the length in basepairs of the input reads of DNA.
placeholders: dict; mapping from name to tf.Placeholder.
global_step: tf.Variable tracking number of training iterations performed.
train_op: operation to perform one training step by gradient descent.
summary_op: operation to log model's performance metrics to TF event files.
accuracy: tf.Variable giving the model's read-level accuracy for the
current inputs.
weighted_accuracy: tf.Variable giving the model's read-level weighted
accuracy for the current inputs.
loss: tf.Variable giving the model's current cross entropy loss.
logits: tf.Variable containing the model's logits for the current inputs.
predictions: tf.Variable containing the model's current predicted
probability distributions for the current inputs.
possible_labels: a dict of possible label values (list of strings), keyed by
target name. Labels in the lists are the order used for integer encoding.
use_tpu: whether model is to be run on TPU.
"""
def __init__(self, hparams, dataset_info, targets, use_tpu=False):
"""Initializes the ConvolutionalNet according to provided hyperparameters.
Does not build the graph---this is done by calling `build_graph` on the
constructed object or using `model_fn`.
Args:
hparams: tf.contrib.training.Hparams object containing the model's
hyperparamters; see configuration.py for hyperparameter definitions.
dataset_info: a `Seq2LabelDatasetInfo` message reflecting the dataset
metadata.
targets: list of strings: the names of the prediction targets.
use_tpu: whether we are running on TPU; if True, summaries will be
disabled.
"""
self._placeholders = {}
self._targets = targets
self._dataset_info = dataset_info
self._hparams = hparams
all_label_values = seq2label_utils.get_all_label_values(self.dataset_info)
self._possible_labels = {
target: all_label_values[target]
for target in self.targets
}
self._use_tpu = use_tpu
@property
def hparams(self):
return self._hparams
@property
def dataset_info(self):
return self._dataset_info
@property
def possible_labels(self):
return self._possible_labels
@property
def bases(self):
return seq2species_input.DNA_BASES
@property
def n_bases(self):
return seq2species_input.NUM_DNA_BASES
@property
def targets(self):
return self._targets
@property
def read_length(self):
return self.dataset_info.read_length
@property
def placeholders(self):
return self._placeholders
@property
def global_step(self):
return self._global_step
@property
def train_op(self):
return self._train_op
@property
def summary_op(self):
return self._summary_op
@property
def accuracy(self):
return self._accuracy
@property
def weighted_accuracy(self):
return self._weighted_accuracy
@property
def loss(self):
return self._loss
@property
def total_loss(self):
return self._total_loss
@property
def logits(self):
return self._logits
@property
def predictions(self):
return self._predictions
@property
def use_tpu(self):
return self._use_tpu
def _summary_scalar(self, name, scalar):
"""Adds a summary scalar, if the platform supports summaries."""
if not self.use_tpu:
return tf.summary.scalar(name, scalar)
else:
return None
def _summary_histogram(self, name, values):
"""Adds a summary histogram, if the platform supports summaries."""
if not self.use_tpu:
return tf.summary.histogram(name, values)
else:
return None
def _init_weights(self, shape, scale=1.0, name='weights'):
"""Randomly initializes a weight Tensor of the given shape.
Args:
shape: list; desired Tensor dimensions.
scale: float; standard deviation scale with which to initialize weights.
name: string name for the variable.
Returns:
TF Variable contining truncated random Normal initialized weights.
"""
num_inputs = shape[0] if len(shape) < 3 else shape[0] * shape[1] * shape[2]
stddev = scale / math.sqrt(num_inputs)
return tf.get_variable(
name,
shape=shape,
initializer=tf.truncated_normal_initializer(0., stddev))
def _init_bias(self, size):
"""Initializes bias vector of given shape as zeros.
Args:
size: int; desired size of bias Tensor.
Returns:
TF Variable containing the initialized biases.
"""
return tf.get_variable(
name='b_{}'.format(size),
shape=[size],
initializer=tf.zeros_initializer())
def _add_summaries(self, mode, gradient_norm, parameter_norm):
"""Defines TensorFlow operation for logging summaries to event files.
Args:
mode: the ModeKey string.
gradient_norm: Tensor; norm of gradients produced during the current
training operation.
parameter_norm: Tensor; norm of the model parameters produced during the
current training operation.
"""
# Log summaries for TensorBoard.
if mode == tf.estimator.ModeKeys.TRAIN:
self._summary_scalar('norm_of_gradients', gradient_norm)
self._summary_scalar('norm_of_parameters', parameter_norm)
self._summary_scalar('total_loss', self.total_loss)
self._summary_scalar('learning_rate', self._learn_rate)
for target in self.targets:
self._summary_scalar('per_read_weighted_accuracy/{}'.format(target),
self.weighted_accuracy[target])
self._summary_scalar('per_read_accuracy/{}'.format(target),
self.accuracy[target])
self._summary_histogram('prediction_frequency/{}'.format(target),
self._predictions[target])
self._summary_scalar('cross_entropy_loss/{}'.format(target),
self._loss[target])
self._summary_op = tf.summary.merge_all()
else:
# Log average performance metrics over many batches using placeholders.
summaries = []
for target in self.targets:
accuracy_ph = tf.placeholder(tf.float32, shape=())
weighted_accuracy_ph = tf.placeholder(tf.float32, shape=())
cross_entropy_ph = tf.placeholder(tf.float32, shape=())
self._placeholders.update({
'accuracy/{}'.format(target): accuracy_ph,
'weighted_accuracy/{}'.format(target): weighted_accuracy_ph,
'cross_entropy/{}'.format(target): cross_entropy_ph,
})
summaries += [
self._summary_scalar('cross_entropy_loss/{}'.format(target),
cross_entropy_ph),
self._summary_scalar('per_read_accuracy/{}'.format(target),
accuracy_ph),
self._summary_scalar('per_read_weighted_accuracy/{}'.format(target),
weighted_accuracy_ph)
]
self._summary_op = tf.summary.merge(summaries)
def _convolution(self,
inputs,
filter_dim,
pointwise_dim=None,
scale=1.0,
padding='SAME'):
"""Applies convolutional filter of given dimensions to given input Tensor.
If a pointwise dimension is specified, a depthwise separable convolution is
performed.
Args:
inputs: 4D Tensor of shape (# reads, 1, # basepairs, # bases).
filter_dim: integer tuple of the form (width, depth).
pointwise_dim: int; output dimension for pointwise convolution.
scale: float; standard deviation scale with which to initialize weights.
padding: string; type of padding to use. One of "SAME" or "VALID".
Returns:
4D Tensor result of applying the convolutional filter to the inputs.
"""
in_channels = inputs.get_shape()[3].value
filter_width, filter_depth = filter_dim
filters = self._init_weights([1, filter_width, in_channels, filter_depth],
scale)
self._summary_histogram(filters.name.split(':')[0].split('/')[1], filters)
if pointwise_dim is None:
return tf.nn.conv2d(
inputs,
filters,
strides=[1, 1, 1, 1],
padding=padding,
name='weights')
pointwise_filters = self._init_weights(
[1, 1, filter_depth * in_channels, pointwise_dim],
scale,
name='pointwise_weights')
self._summary_histogram(
pointwise_filters.name.split(':')[0].split('/')[1], pointwise_filters)
return tf.nn.separable_conv2d(
inputs,
filters,
pointwise_filters,
strides=[1, 1, 1, 1],
padding=padding)
def _pool(self, inputs, pooling_type):
"""Performs pooling across width and height of the given inputs.
Args:
inputs: Tensor shaped (batch, height, width, channels) over which to pool.
In our case, height is a unitary dimension and width can be thought of
as the read dimension.
pooling_type: string; one of "avg" or "max".
Returns:
Tensor result of performing pooling of the given pooling_type over the
height and width dimensions of the given inputs.
"""
if pooling_type == 'max':
return tf.reduce_max(inputs, axis=[1, 2])
if pooling_type == 'avg':
return tf.reduce_sum(
inputs, axis=[1, 2]) / tf.to_float(tf.shape(inputs)[2])
def _leaky_relu(self, lrelu_slope, inputs):
"""Applies leaky ReLu activation to the given inputs with the given slope.
Args:
lrelu_slope: float; slope value for the activation function.
A slope of 0.0 defines a standard ReLu activation, while a positive
slope defines a leaky ReLu.
inputs: Tensor upon which to apply the activation function.
Returns:
Tensor result of applying the activation function to the given inputs.
"""
with tf.variable_scope('leaky_relu_activation'):
return tf.maximum(lrelu_slope * inputs, inputs)
def _dropout(self, inputs, keep_prob):
"""Applies dropout to the given inputs.
Args:
inputs: Tensor upon which to apply dropout.
keep_prob: float; probability with which to randomly retain values in
the given input.
Returns:
Tensor result of applying dropout to the given inputs.
"""
with tf.variable_scope('dropout'):
if keep_prob < 1.0:
return tf.nn.dropout(inputs, keep_prob)
return inputs
def build_graph(self, features, labels, mode, batch_size):
"""Creates TensorFlow model graph.
Args:
features: a dict of input features Tensors.
labels: a dict (by target name) of prediction labels.
mode: the ModeKey string.
batch_size: the integer batch size.
Side Effect:
Adds the following key Tensors and operations as class attributes:
placeholders, global_step, train_op, summary_op, accuracy,
weighted_accuracy, loss, logits, and predictions.
"""
is_train = (mode == tf.estimator.ModeKeys.TRAIN)
read = features['sequence']
# Add a unitary dimension, so we can use conv2d.
read = tf.expand_dims(read, 1)
prev_out = read
filters = zip(self.hparams.filter_widths, self.hparams.filter_depths)
for i, f in enumerate(filters):
with tf.variable_scope('convolution_' + str(i)):
if self.hparams.use_depthwise_separable:
p = self.hparams.pointwise_depths[i]
else:
p = None
conv_out = self._convolution(
prev_out, f, pointwise_dim=p, scale=self.hparams.weight_scale)
conv_act_out = self._leaky_relu(self.hparams.lrelu_slope, conv_out)
prev_out = (
self._dropout(conv_act_out, self.hparams.keep_prob)
if is_train else conv_act_out)
for i in xrange(self.hparams.num_fc_layers):
with tf.variable_scope('fully_connected_' + str(i)):
# Create a convolutional layer which is equivalent to a fully-connected
# layer when reads have length self.hparams.min_read_length.
# The convolution will tile the layer appropriately for longer reads.
biases = self._init_bias(self.hparams.num_fc_units)
if i == 0:
# Take entire min_read_length segment as input.
# Output a single value per min_read_length_segment.
filter_dimensions = (self.hparams.min_read_length,
self.hparams.num_fc_units)
else:
# Take single output value of previous layer as input.
filter_dimensions = (1, self.hparams.num_fc_units)
fc_out = biases + self._convolution(
prev_out,
filter_dimensions,
scale=self.hparams.weight_scale,
padding='VALID')
self._summary_histogram(biases.name.split(':')[0].split('/')[1], biases)
fc_act_out = self._leaky_relu(self.hparams.lrelu_slope, fc_out)
prev_out = (
self._dropout(fc_act_out, self.hparams.keep_prob)
if is_train else fc_act_out)
# Pool to collapse tiling for reads longer than hparams.min_read_length.
with tf.variable_scope('pool'):
pool_out = self._pool(prev_out, self.hparams.pooling_type)
with tf.variable_scope('output'):
self._logits = {}
self._predictions = {}
self._weighted_accuracy = {}
self._accuracy = {}
self._loss = collections.OrderedDict()
for target in self.targets:
with tf.variable_scope(target):
label = labels[target]
possible_labels = self.possible_labels[target]
weights = self._init_weights(
[pool_out.get_shape()[1].value,
len(possible_labels)],
self.hparams.weight_scale,
name='weights')
biases = self._init_bias(len(possible_labels))
self._summary_histogram(
weights.name.split(':')[0].split('/')[1], weights)
self._summary_histogram(
biases.name.split(':')[0].split('/')[1], biases)
logits = tf.matmul(pool_out, weights) + biases
predictions = tf.nn.softmax(logits)
gather_inds = tf.stack([tf.range(batch_size), label], axis=1)
self._weighted_accuracy[target] = tf.reduce_mean(
tf.gather_nd(predictions, gather_inds))
argmax_prediction = tf.cast(tf.argmax(predictions, axis=1), tf.int32)
self._accuracy[target] = tf.reduce_mean(
tf.to_float(tf.equal(label, argmax_prediction)))
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=label, logits=logits)
self._loss[target] = tf.reduce_mean(losses)
self._logits[target] = logits
self._predictions[target] = predictions
# Compute total loss
self._total_loss = tf.add_n(self._loss.values())
# Define the optimizer.
# tf.estimator framework builds the global_step for us, but if we aren't
# using the framework we have to make it ourselves.
self._global_step = tf.train.get_or_create_global_step()
if self.hparams.lr_decay < 0:
self._learn_rate = self.hparams.lr_init
else:
self._learn_rate = tf.train.exponential_decay(
self.hparams.lr_init,
self._global_step,
int(self.hparams.train_steps),
self.hparams.lr_decay,
staircase=False)
if self.hparams.optimizer == 'adam':
opt = tf.train.AdamOptimizer(self._learn_rate, self.hparams.optimizer_hp)
elif self.hparams.optimizer == 'momentum':
opt = tf.train.MomentumOptimizer(self._learn_rate,
self.hparams.optimizer_hp)
if self.use_tpu:
opt = tf.contrib.tpu.CrossShardOptimizer(opt)
gradients, variables = zip(*opt.compute_gradients(self._total_loss))
clipped_gradients, _ = tf.clip_by_global_norm(gradients,
self.hparams.grad_clip_norm)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self._train_op = opt.apply_gradients(
zip(clipped_gradients, variables), global_step=self._global_step)
if not self.use_tpu:
grad_norm = tf.global_norm(gradients) if is_train else None
param_norm = tf.global_norm(variables) if is_train else None
self._add_summaries(mode, grad_norm, param_norm)
def model_fn(self, features, labels, mode, params):
"""Function fulfilling the tf.estimator model_fn interface.
Args:
features: a dict containing the input features for prediction.
labels: a dict from target name to Tensor-value prediction.
mode: the ModeKey string.
params: a dictionary of parameters for building the model; current params
are params["batch_size"]: the integer batch size.
Returns:
A tf.estimator.EstimatorSpec object ready for use in training, inference.
or evaluation.
"""
self.build_graph(features, labels, mode, params['batch_size'])
return tf.estimator.EstimatorSpec(
mode,
predictions=self.predictions,
loss=self.total_loss,
train_op=self.train_op,
eval_metric_ops={})
|