Spaces:
Running
Running
File size: 11,253 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines training scheme for neural networks for Seq2Species prediction.
Defines and runs the loop for training a (optionally) depthwise separable
convolutional model for predicting taxonomic labels from short reads of DNA.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import flags
import numpy as np
import tensorflow as tf
from google.protobuf import text_format
import build_model
import configuration
import input as seq2species_input
from protos import seq2label_pb2
import seq2label_utils
# Define non-tunable parameters.
flags.DEFINE_integer('num_filters', 1, 'Number of filters for conv model')
flags.DEFINE_string('hparams', '',
'Comma-separated list of name=value hyperparameter '
"pairs ('hp1=value1,hp2=value2'). Unspecified "
'hyperparameters will be filled with defaults.')
flags.DEFINE_integer('batch_size', 512, 'Size of batches during training.')
flags.DEFINE_integer('min_train_steps', 1000,
'Minimum number of training steps to run.')
flags.DEFINE_float('max_task_loss', 10.0,
"Terminate trial if task loss doesn't fall below this "
'within --min_train_steps.')
flags.DEFINE_integer('n_print_progress_every', 1000,
'Print training progress every '
'--n_print_progress_every global steps.')
flags.DEFINE_list('targets', ['species'],
'Names of taxonomic ranks to use as training targets.')
flags.DEFINE_float(
'noise_rate', 0.0, 'Rate [0.0, 1.0] at which to inject '
'base-flipping noise into input read sequences.')
# Define paths to logs and data.
flags.DEFINE_list(
'train_files', [], 'Full paths to the TFRecords containing the '
'training examples.')
flags.DEFINE_string(
'metadata_path', '', 'Full path of the text proto containing configuration '
'information about the set of training examples.')
flags.DEFINE_string('logdir', '/tmp/seq2species',
'Directory to which to write logs.')
# Define supervisor/checkpointing options.
flags.DEFINE_integer('task', 0, 'Task ID of the replica running the training.')
flags.DEFINE_string('master', '', 'Name of the TF master to use.')
flags.DEFINE_integer(
'save_model_secs', 900, 'Rate at which to save model parameters. '
'Set to 0 to disable checkpointing.')
flags.DEFINE_integer('recovery_wait_secs', 30,
'Wait to recover model from checkpoint '
'before timing out.')
flags.DEFINE_integer('save_summaries_secs', 900,
'Rate at which to save Tensorboard summaries.')
flags.DEFINE_integer('ps_tasks', 0,
'Number of tasks in the ps job; 0 if no ps is used.')
FLAGS = flags.FLAGS
RANDOM_SEED = 42
def wait_until(time_sec):
"""Stalls execution until a given time.
Args:
time_sec: time, in seconds, until which to loop idly.
"""
while time.time() < time_sec:
pass
def update_measures(measures, new_measures, loss_val, max_loss=None):
"""Updates tracking of experimental measures and infeasibilty.
Args:
measures: dict; mapping from measure name to measure value.
new_measures: dict; mapping from measure name to new measure values.
loss_val: float; value of loss metric by which to determine fesibility.
max_loss: float; maximum value at which to consider the loss feasible.
Side Effects:
Updates the given mapping of measures and values based on the current
experimental metrics stored in new_measures, and determines current
feasibility of the experiment based on the provided loss value.
"""
max_loss = max_loss if max_loss else np.finfo('f').max
measures['is_infeasible'] = (
loss_val >= max_loss or not np.isfinite(loss_val))
measures.update(new_measures)
def run_training(model, hparams, training_dataset, logdir, batch_size):
"""Trains the given model on random mini-batches of reads.
Args:
model: ConvolutionalNet instance containing the model graph and operations.
hparams: tf.contrib.training.Hparams object containing the model's
hyperparamters; see configuration.py for hyperparameter definitions.
training_dataset: an `InputDataset` that can feed labelled examples.
logdir: string; full path of directory to which to save checkpoints.
batch_size: integer batch size.
Yields:
Tuple comprising a dictionary of experimental measures and the save path
for train checkpoints and summaries.
"""
input_params = dict(batch_size=batch_size)
features, labels = training_dataset.input_fn(input_params)
model.build_graph(features, labels, tf.estimator.ModeKeys.TRAIN, batch_size)
is_chief = FLAGS.task == 0
scaffold = tf.train.Scaffold(
saver=tf.train.Saver(
tf.global_variables(),
max_to_keep=5,
keep_checkpoint_every_n_hours=1.0),
init_op=tf.global_variables_initializer(),
summary_op=model.summary_op)
with tf.train.MonitoredTrainingSession(
master=FLAGS.master,
checkpoint_dir=logdir,
is_chief=is_chief,
scaffold=scaffold,
save_summaries_secs=FLAGS.save_summaries_secs,
save_checkpoint_secs=FLAGS.save_model_secs,
max_wait_secs=FLAGS.recovery_wait_secs) as sess:
global_step = sess.run(model.global_step)
print('Initialized model at global step ', global_step)
init_time = time.time()
measures = {'is_infeasible': False}
if is_chief:
model_info = seq2label_utils.construct_seq2label_model_info(
hparams, 'conv', FLAGS.targets, FLAGS.metadata_path, FLAGS.batch_size,
FLAGS.num_filters, FLAGS.noise_rate)
write_message(model_info, os.path.join(logdir, 'model_info.pbtxt'))
ops = [
model.accuracy, model.weighted_accuracy, model.total_loss,
model.global_step, model.train_op
]
while not sess.should_stop() and global_step < hparams.train_steps:
accuracy, weighted_accuracy, loss, global_step, _ = sess.run(ops)
def gather_measures():
"""Updates the measures dictionary from this batch."""
new_measures = {'train_loss': loss, 'global_step': global_step}
for target in FLAGS.targets:
new_measures.update({
('train_accuracy/%s' % target): accuracy[target],
('train_weighted_accuracy/%s' % target): weighted_accuracy[target]
})
update_measures(
measures, new_measures, loss, max_loss=FLAGS.max_task_loss)
# Periodically track measures according to current mini-batch performance.
# Log a message.
if global_step % FLAGS.n_print_progress_every == 0:
log_message = ('\tstep: %d (%d sec), loss: %f' %
(global_step, time.time() - init_time, loss))
for target in FLAGS.targets:
log_message += (', accuracy/%s: %f ' % (target, accuracy[target]))
log_message += (', weighted_accuracy/%s: %f ' %
(target, weighted_accuracy[target]))
print(log_message)
# Gather new measures and update the measures dictionary.
gather_measures()
yield measures, scaffold.saver.last_checkpoints[-1]
# Check for additional stopping criteria.
if not np.isfinite(loss) or (loss >= FLAGS.max_task_loss and
global_step > FLAGS.min_train_steps):
break
# Always yield once at the end.
gather_measures()
yield measures, scaffold.saver.last_checkpoints[-1]
def write_message(message, filename):
"""Writes contents of the given message to the given filename as a text proto.
Args:
message: the proto message to save.
filename: full path of file to which to save the text proto.
Side Effects:
Outputs a text proto file to the given filename.
"""
message_string = text_format.MessageToString(message)
with tf.gfile.GFile(filename, 'w') as f:
f.write(message_string)
def write_measures(measures, checkpoint_file, init_time):
"""Writes performance measures to file.
Args:
measures: dict; mapping from measure name to measure value.
checkpoint_file: string; full save path for checkpoints and summaries.
init_time: int; start time for work on the current experiment.
Side Effects:
Writes given dictionary of performance measures for the current experiment
to a 'measures.pbtxt' file in the checkpoint directory.
"""
# Save experiment measures.
print('global_step: ', measures['global_step'])
experiment_measures = seq2label_pb2.Seq2LabelExperimentMeasures(
checkpoint_path=checkpoint_file,
steps=measures['global_step'],
experiment_infeasible=measures['is_infeasible'],
wall_time=time.time() - init_time) # Inaccurate for restarts.
for name, value in measures.iteritems():
if name not in ['is_infeasible', 'global_step']:
experiment_measures.measures.add(name=name, value=value)
measures_file = os.path.join(
os.path.dirname(checkpoint_file), 'measures.pbtxt')
write_message(experiment_measures, measures_file)
print('Wrote ', measures_file,
' containing the following experiment measures:\n', experiment_measures)
def main(unused_argv):
dataset_info = seq2species_input.load_dataset_info(FLAGS.metadata_path)
init_time = time.time()
# Determine model hyperparameters.
hparams = configuration.parse_hparams(FLAGS.hparams, FLAGS.num_filters)
print('Current Hyperparameters:')
for hp_name, hp_val in hparams.values().items():
print('\t', hp_name, ': ', hp_val)
# Initialize the model graph.
print('Constructing TensorFlow Graph.')
tf.reset_default_graph()
input_dataset = seq2species_input.InputDataset.from_tfrecord_files(
FLAGS.train_files,
'train',
FLAGS.targets,
dataset_info,
noise_rate=FLAGS.noise_rate,
random_seed=RANDOM_SEED)
with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
model = build_model.ConvolutionalNet(
hparams, dataset_info, targets=FLAGS.targets)
# Run the experiment.
measures, checkpoint_file = None, None
print('Starting model training.')
for cur_measures, cur_file in run_training(
model, hparams, input_dataset, FLAGS.logdir, batch_size=FLAGS.batch_size):
measures, checkpoint_file = cur_measures, cur_file
# Save experiment results.
write_measures(measures, checkpoint_file, init_time)
if __name__ == '__main__':
tf.app.run(main)
|