Spaces:
Running
Running
File size: 4,173 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides data for the ImageNet ILSVRC 2012 Dataset plus some bounding boxes.
Some images have one or more bounding boxes associated with the label of the
image. See details here: http://image-net.org/download-bboxes
WARNING: Don't use for object detection, in this case all the bounding boxes
of the image belong to just one class.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
slim = tf.contrib.slim
_FILE_PATTERN = '%s-*'
_SPLITS_TO_SIZES = {
'train': 1281167,
'validation': 50000,
}
_ITEMS_TO_DESCRIPTIONS = {
'image': 'A color image of varying height and width.',
'label': 'The label id of the image, integer between 0 and 999',
'label_text': 'The text of the label.',
'object/bbox': 'A list of bounding boxes.',
'object/label': 'A list of labels, one per each object.',
}
_NUM_CLASSES = 1001
def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
"""Gets a dataset tuple with instructions for reading ImageNet.
Args:
split_name: A train/test split name.
dataset_dir: The base directory of the dataset sources.
file_pattern: The file pattern to use when matching the dataset sources.
It is assumed that the pattern contains a '%s' string so that the split
name can be inserted.
reader: The TensorFlow reader type.
Returns:
A `Dataset` namedtuple.
Raises:
ValueError: if `split_name` is not a valid train/test split.
"""
if split_name not in _SPLITS_TO_SIZES:
raise ValueError('split name %s was not recognized.' % split_name)
if not file_pattern:
file_pattern = _FILE_PATTERN
file_pattern = os.path.join(dataset_dir, file_pattern % split_name)
# Allowing None in the signature so that dataset_factory can use the default.
if reader is None:
reader = tf.TFRecordReader
keys_to_features = {
'image/encoded': tf.FixedLenFeature(
(), tf.string, default_value=''),
'image/format': tf.FixedLenFeature(
(), tf.string, default_value='jpeg'),
'image/class/label': tf.FixedLenFeature(
[], dtype=tf.int64, default_value=-1),
'image/class/text': tf.FixedLenFeature(
[], dtype=tf.string, default_value=''),
'image/object/bbox/xmin': tf.VarLenFeature(
dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(
dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(
dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(
dtype=tf.float32),
'image/object/class/label': tf.VarLenFeature(
dtype=tf.int64),
}
items_to_handlers = {
'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
'label_text': slim.tfexample_decoder.Tensor('image/class/text'),
'object/bbox': slim.tfexample_decoder.BoundingBox(
['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'),
'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'),
}
decoder = slim.tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
return slim.dataset.Dataset(
data_sources=file_pattern,
reader=reader,
decoder=decoder,
num_samples=_SPLITS_TO_SIZES[split_name],
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
num_classes=_NUM_CLASSES)
|