Spaces:
Running
Running
File size: 11,077 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Evaluates the PIXELDA model.
-- Compiles the model for CPU.
$ bazel build -c opt third_party/tensorflow_models/domain_adaptation/pixel_domain_adaptation:pixelda_eval
-- Compile the model for GPU.
$ bazel build -c opt --copt=-mavx --config=cuda \
third_party/tensorflow_models/domain_adaptation/pixel_domain_adaptation:pixelda_eval
-- Runs the training.
$ ./bazel-bin/third_party/tensorflow_models/domain_adaptation/pixel_domain_adaptation/pixelda_eval \
--source_dataset=mnist \
--target_dataset=mnist_m \
--dataset_dir=/tmp/datasets/ \
--alsologtostderr
-- Visualize the results.
$ bash learning/brain/tensorboard/tensorboard.sh \
--port 2222 --logdir=/tmp/pixelda/
"""
from functools import partial
import math
# Dependency imports
import tensorflow as tf
from domain_adaptation.datasets import dataset_factory
from domain_adaptation.pixel_domain_adaptation import pixelda_model
from domain_adaptation.pixel_domain_adaptation import pixelda_preprocess
from domain_adaptation.pixel_domain_adaptation import pixelda_utils
from domain_adaptation.pixel_domain_adaptation import pixelda_losses
from domain_adaptation.pixel_domain_adaptation.hparams import create_hparams
slim = tf.contrib.slim
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'BNS name of the TensorFlow master to use.')
flags.DEFINE_string('checkpoint_dir', '/tmp/pixelda/',
'Directory where the model was written to.')
flags.DEFINE_string('eval_dir', '/tmp/pixelda/',
'Directory where the results are saved to.')
flags.DEFINE_integer('eval_interval_secs', 60,
'The frequency, in seconds, with which evaluation is run.')
flags.DEFINE_string('target_split_name', 'test',
'The name of the train/test split.')
flags.DEFINE_string('source_split_name', 'train', 'Split for source dataset.'
' Defaults to train.')
flags.DEFINE_string('source_dataset', 'mnist',
'The name of the source dataset.')
flags.DEFINE_string('target_dataset', 'mnist_m',
'The name of the target dataset.')
flags.DEFINE_string(
'dataset_dir',
'', # None,
'The directory where the datasets can be found.')
flags.DEFINE_integer(
'num_readers', 4,
'The number of parallel readers that read data from the dataset.')
flags.DEFINE_integer('num_preprocessing_threads', 4,
'The number of threads used to create the batches.')
# HParams
flags.DEFINE_string('hparams', '', 'Comma separated hyperparameter values')
def run_eval(run_dir, checkpoint_dir, hparams):
"""Runs the eval loop.
Args:
run_dir: The directory where eval specific logs are placed
checkpoint_dir: The directory where the checkpoints are stored
hparams: The hyperparameters struct.
Raises:
ValueError: if hparams.arch is not recognized.
"""
for checkpoint_path in slim.evaluation.checkpoints_iterator(
checkpoint_dir, FLAGS.eval_interval_secs):
with tf.Graph().as_default():
#########################
# Preprocess the inputs #
#########################
target_dataset = dataset_factory.get_dataset(
FLAGS.target_dataset,
split_name=FLAGS.target_split_name,
dataset_dir=FLAGS.dataset_dir)
target_images, target_labels = dataset_factory.provide_batch(
FLAGS.target_dataset, FLAGS.target_split_name, FLAGS.dataset_dir,
FLAGS.num_readers, hparams.batch_size,
FLAGS.num_preprocessing_threads)
num_target_classes = target_dataset.num_classes
target_labels['class'] = tf.argmax(target_labels['classes'], 1)
del target_labels['classes']
if hparams.arch not in ['dcgan']:
source_dataset = dataset_factory.get_dataset(
FLAGS.source_dataset,
split_name=FLAGS.source_split_name,
dataset_dir=FLAGS.dataset_dir)
num_source_classes = source_dataset.num_classes
source_images, source_labels = dataset_factory.provide_batch(
FLAGS.source_dataset, FLAGS.source_split_name, FLAGS.dataset_dir,
FLAGS.num_readers, hparams.batch_size,
FLAGS.num_preprocessing_threads)
source_labels['class'] = tf.argmax(source_labels['classes'], 1)
del source_labels['classes']
if num_source_classes != num_target_classes:
raise ValueError(
'Input and output datasets must have same number of classes')
else:
source_images = None
source_labels = None
####################
# Define the model #
####################
end_points = pixelda_model.create_model(
hparams,
target_images,
source_images=source_images,
source_labels=source_labels,
is_training=False,
num_classes=num_target_classes)
#######################
# Metrics & Summaries #
#######################
names_to_values, names_to_updates = create_metrics(end_points,
source_labels,
target_labels, hparams)
pixelda_utils.summarize_model(end_points)
pixelda_utils.summarize_transferred_grid(
end_points['transferred_images'], source_images, name='Transferred')
if 'source_images_recon' in end_points:
pixelda_utils.summarize_transferred_grid(
end_points['source_images_recon'],
source_images,
name='Source Reconstruction')
pixelda_utils.summarize_images(target_images, 'Target')
for name, value in names_to_values.iteritems():
tf.summary.scalar(name, value)
# Use the entire split by default
num_examples = target_dataset.num_samples
num_batches = math.ceil(num_examples / float(hparams.batch_size))
global_step = slim.get_or_create_global_step()
result = slim.evaluation.evaluate_once(
master=FLAGS.master,
checkpoint_path=checkpoint_path,
logdir=run_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
final_op=names_to_values)
def to_degrees(log_quaternion_loss):
"""Converts a log quaternion distance to an angle.
Args:
log_quaternion_loss: The log quaternion distance between two
unit quaternions (or a batch of pairs of quaternions).
Returns:
The angle in degrees of the implied angle-axis representation.
"""
return tf.acos(-(tf.exp(log_quaternion_loss) - 1)) * 2 * 180 / math.pi
def create_metrics(end_points, source_labels, target_labels, hparams):
"""Create metrics for the model.
Args:
end_points: A dictionary of end point name to tensor
source_labels: Labels for source images. batch_size x 1
target_labels: Labels for target images. batch_size x 1
hparams: The hyperparameters struct.
Returns:
Tuple of (names_to_values, names_to_updates), dictionaries that map a metric
name to its value and update op, respectively
"""
###########################################
# Evaluate the Domain Prediction Accuracy #
###########################################
batch_size = hparams.batch_size
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
('eval/Domain_Accuracy-Transferred'):
tf.contrib.metrics.streaming_accuracy(
tf.to_int32(
tf.round(tf.sigmoid(end_points[
'transferred_domain_logits']))),
tf.zeros(batch_size, dtype=tf.int32)),
('eval/Domain_Accuracy-Target'):
tf.contrib.metrics.streaming_accuracy(
tf.to_int32(
tf.round(tf.sigmoid(end_points['target_domain_logits']))),
tf.ones(batch_size, dtype=tf.int32))
})
################################
# Evaluate the task classifier #
################################
if 'source_task_logits' in end_points:
metric_name = 'eval/Task_Accuracy-Source'
names_to_values[metric_name], names_to_updates[
metric_name] = tf.contrib.metrics.streaming_accuracy(
tf.argmax(end_points['source_task_logits'], 1),
source_labels['class'])
if 'transferred_task_logits' in end_points:
metric_name = 'eval/Task_Accuracy-Transferred'
names_to_values[metric_name], names_to_updates[
metric_name] = tf.contrib.metrics.streaming_accuracy(
tf.argmax(end_points['transferred_task_logits'], 1),
source_labels['class'])
if 'target_task_logits' in end_points:
metric_name = 'eval/Task_Accuracy-Target'
names_to_values[metric_name], names_to_updates[
metric_name] = tf.contrib.metrics.streaming_accuracy(
tf.argmax(end_points['target_task_logits'], 1),
target_labels['class'])
##########################################################################
# Pose data-specific losses.
##########################################################################
if 'quaternion' in source_labels.keys():
params = {}
params['use_logging'] = False
params['batch_size'] = batch_size
angle_loss_source = to_degrees(
pixelda_losses.log_quaternion_loss_batch(end_points[
'source_quaternion'], source_labels['quaternion'], params))
angle_loss_transferred = to_degrees(
pixelda_losses.log_quaternion_loss_batch(end_points[
'transferred_quaternion'], source_labels['quaternion'], params))
angle_loss_target = to_degrees(
pixelda_losses.log_quaternion_loss_batch(end_points[
'target_quaternion'], target_labels['quaternion'], params))
metric_name = 'eval/Angle_Loss-Source'
names_to_values[metric_name], names_to_updates[
metric_name] = slim.metrics.mean(angle_loss_source)
metric_name = 'eval/Angle_Loss-Transferred'
names_to_values[metric_name], names_to_updates[
metric_name] = slim.metrics.mean(angle_loss_transferred)
metric_name = 'eval/Angle_Loss-Target'
names_to_values[metric_name], names_to_updates[
metric_name] = slim.metrics.mean(angle_loss_target)
return names_to_values, names_to_updates
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
hparams = create_hparams(FLAGS.hparams)
run_eval(
run_dir=FLAGS.eval_dir,
checkpoint_dir=FLAGS.checkpoint_dir,
hparams=hparams)
if __name__ == '__main__':
tf.app.run()
|