Spaces:
Running
Running
File size: 25,233 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the Domain Adaptation via Style Transfer (PixelDA) model components.
A number of details in the implementation make reference to one of the following
works:
- "Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks""
https://arxiv.org/abs/1511.06434
This paper makes several architecture recommendations:
1. Use strided convs in discriminator, fractional-strided convs in generator
2. batchnorm everywhere
3. remove fully connected layers for deep models
4. ReLu for all layers in generator, except tanh on output
5. LeakyReLu for everything in discriminator
"""
import functools
import math
# Dependency imports
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
from domain_adaptation.pixel_domain_adaptation import pixelda_task_towers
def create_model(hparams,
target_images,
source_images=None,
source_labels=None,
is_training=False,
noise=None,
num_classes=None):
"""Create a GAN model.
Arguments:
hparams: HParam object specifying model params
target_images: A `Tensor` of size [batch_size, height, width, channels]. It
is assumed that the images are [-1, 1] normalized.
source_images: A `Tensor` of size [batch_size, height, width, channels]. It
is assumed that the images are [-1, 1] normalized.
source_labels: A `Tensor` of size [batch_size] of categorical labels between
[0, num_classes]
is_training: whether model is currently training
noise: If None, model generates its own noise. Otherwise use provided.
num_classes: Number of classes for classification
Returns:
end_points dict with model outputs
Raises:
ValueError: unknown hparams.arch setting
"""
if num_classes is None and hparams.arch in ['resnet', 'simple']:
raise ValueError('Num classes must be provided to create task classifier')
if target_images.dtype != tf.float32:
raise ValueError('target_images must be tf.float32 and [-1, 1] normalized.')
if source_images is not None and source_images.dtype != tf.float32:
raise ValueError('source_images must be tf.float32 and [-1, 1] normalized.')
###########################
# Create latent variables #
###########################
latent_vars = dict()
if hparams.noise_channel:
noise_shape = [hparams.batch_size, hparams.noise_dims]
if noise is not None:
assert noise.shape.as_list() == noise_shape
tf.logging.info('Using provided noise')
else:
tf.logging.info('Using random noise')
noise = tf.random_uniform(
shape=noise_shape,
minval=-1,
maxval=1,
dtype=tf.float32,
name='random_noise')
latent_vars['noise'] = noise
####################
# Create generator #
####################
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose, slim.fully_connected],
normalizer_params=batch_norm_params(is_training,
hparams.batch_norm_decay),
weights_initializer=tf.random_normal_initializer(
stddev=hparams.normal_init_std),
weights_regularizer=tf.contrib.layers.l2_regularizer(
hparams.weight_decay)):
with slim.arg_scope([slim.conv2d], padding='SAME'):
if hparams.arch == 'dcgan':
end_points = dcgan(
target_images, latent_vars, hparams, scope='generator')
elif hparams.arch == 'resnet':
end_points = resnet_generator(
source_images,
target_images.shape.as_list()[1:4],
hparams=hparams,
latent_vars=latent_vars)
elif hparams.arch == 'residual_interpretation':
end_points = residual_interpretation_generator(
source_images, is_training=is_training, hparams=hparams)
elif hparams.arch == 'simple':
end_points = simple_generator(
source_images,
target_images,
is_training=is_training,
hparams=hparams,
latent_vars=latent_vars)
elif hparams.arch == 'identity':
# Pass through unmodified, besides changing # channels
# Used to calculate baseline numbers
# Also set `generator_steps=0` for baseline
if hparams.generator_steps:
raise ValueError('Must set generator_steps=0 for identity arch. Is %s'
% hparams.generator_steps)
transferred_images = source_images
source_channels = source_images.shape.as_list()[-1]
target_channels = target_images.shape.as_list()[-1]
if source_channels == 1 and target_channels == 3:
transferred_images = tf.tile(source_images, [1, 1, 1, 3])
if source_channels == 3 and target_channels == 1:
transferred_images = tf.image.rgb_to_grayscale(source_images)
end_points = {'transferred_images': transferred_images}
else:
raise ValueError('Unknown architecture: %s' % hparams.arch)
#####################
# Domain Classifier #
#####################
if hparams.arch in [
'dcgan', 'resnet', 'residual_interpretation', 'simple', 'identity',
]:
# Add a discriminator for these architectures
end_points['transferred_domain_logits'] = predict_domain(
end_points['transferred_images'],
hparams,
is_training=is_training,
reuse=False)
end_points['target_domain_logits'] = predict_domain(
target_images,
hparams,
is_training=is_training,
reuse=True)
###################
# Task Classifier #
###################
if hparams.task_tower != 'none' and hparams.arch in [
'resnet', 'residual_interpretation', 'simple', 'identity',
]:
with tf.variable_scope('discriminator'):
with tf.variable_scope('task_tower'):
end_points['source_task_logits'], end_points[
'source_quaternion'] = pixelda_task_towers.add_task_specific_model(
source_images,
hparams,
num_classes=num_classes,
is_training=is_training,
reuse_private=False,
private_scope='source_task_classifier',
reuse_shared=False)
end_points['transferred_task_logits'], end_points[
'transferred_quaternion'] = (
pixelda_task_towers.add_task_specific_model(
end_points['transferred_images'],
hparams,
num_classes=num_classes,
is_training=is_training,
reuse_private=False,
private_scope='transferred_task_classifier',
reuse_shared=True))
end_points['target_task_logits'], end_points[
'target_quaternion'] = pixelda_task_towers.add_task_specific_model(
target_images,
hparams,
num_classes=num_classes,
is_training=is_training,
reuse_private=True,
private_scope='transferred_task_classifier',
reuse_shared=True)
# Remove any endpoints with None values
return dict((k, v) for k, v in end_points.iteritems() if v is not None)
def batch_norm_params(is_training, batch_norm_decay):
return {
'is_training': is_training,
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
}
def lrelu(x, leakiness=0.2):
"""Relu, with optional leaky support."""
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def upsample(net, num_filters, scale=2, method='resize_conv', scope=None):
"""Performs spatial upsampling of the given features.
Args:
net: A `Tensor` of shape [batch_size, height, width, filters].
num_filters: The number of output filters.
scale: The scale of the upsampling. Must be a positive integer greater or
equal to two.
method: The method by which the features are upsampled. Valid options
include 'resize_conv' and 'conv2d_transpose'.
scope: An optional variable scope.
Returns:
A new set of features of shape
[batch_size, height*scale, width*scale, num_filters].
Raises:
ValueError: if `method` is not valid or
"""
if scale < 2:
raise ValueError('scale must be greater or equal to two.')
with tf.variable_scope(scope, 'upsample', [net]):
if method == 'resize_conv':
net = tf.image.resize_nearest_neighbor(
net, [net.shape.as_list()[1] * scale,
net.shape.as_list()[2] * scale],
align_corners=True,
name='resize')
return slim.conv2d(net, num_filters, stride=1, scope='conv')
elif method == 'conv2d_transpose':
return slim.conv2d_transpose(net, num_filters, scope='deconv')
else:
raise ValueError('Upsample method [%s] was not recognized.' % method)
def project_latent_vars(hparams, proj_shape, latent_vars, combine_method='sum'):
"""Generate noise and project to input volume size.
Args:
hparams: The hyperparameter HParams struct.
proj_shape: Shape to project noise (not including batch size).
latent_vars: dictionary of `'key': Tensor of shape [batch_size, N]`
combine_method: How to combine the projected values.
sum = project to volume then sum
concat = concatenate along last dimension (i.e. channel)
Returns:
If combine_method=sum, a `Tensor` of size `hparams.projection_shape`
If combine_method=concat and there are N latent vars, a `Tensor` of size
`hparams.projection_shape`, with the last channel multiplied by N
Raises:
ValueError: combine_method is not one of sum/concat
"""
values = []
for var in latent_vars:
with tf.variable_scope(var):
# Project & reshape noise to a HxWxC input
projected = slim.fully_connected(
latent_vars[var],
np.prod(proj_shape),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm)
values.append(tf.reshape(projected, [hparams.batch_size] + proj_shape))
if combine_method == 'sum':
result = values[0]
for value in values[1:]:
result += value
elif combine_method == 'concat':
# Concatenate along last axis
result = tf.concat(values, len(proj_shape))
else:
raise ValueError('Unknown combine_method %s' % combine_method)
tf.logging.info('Latent variables projected to size %s volume', result.shape)
return result
def resnet_block(net, hparams):
"""Create a resnet block."""
net_in = net
net = slim.conv2d(
net,
hparams.resnet_filters,
stride=1,
normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.relu)
net = slim.conv2d(
net,
hparams.resnet_filters,
stride=1,
normalizer_fn=slim.batch_norm,
activation_fn=None)
if hparams.resnet_residuals:
net += net_in
return net
def resnet_stack(images, output_shape, hparams, scope=None):
"""Create a resnet style transfer block.
Args:
images: [batch-size, height, width, channels] image tensor to feed as input
output_shape: output image shape in form [height, width, channels]
hparams: hparams objects
scope: Variable scope
Returns:
Images after processing with resnet blocks.
"""
end_points = {}
if hparams.noise_channel:
# separate the noise for visualization
end_points['noise'] = images[:, :, :, -1]
assert images.shape.as_list()[1:3] == output_shape[0:2]
with tf.variable_scope(scope, 'resnet_style_transfer', [images]):
with slim.arg_scope(
[slim.conv2d],
normalizer_fn=slim.batch_norm,
kernel_size=[hparams.generator_kernel_size] * 2,
stride=1):
net = slim.conv2d(
images,
hparams.resnet_filters,
normalizer_fn=None,
activation_fn=tf.nn.relu)
for block in range(hparams.resnet_blocks):
net = resnet_block(net, hparams)
end_points['resnet_block_{}'.format(block)] = net
net = slim.conv2d(
net,
output_shape[-1],
kernel_size=[1, 1],
normalizer_fn=None,
activation_fn=tf.nn.tanh,
scope='conv_out')
end_points['transferred_images'] = net
return net, end_points
def predict_domain(images,
hparams,
is_training=False,
reuse=False,
scope='discriminator'):
"""Creates a discriminator for a GAN.
Args:
images: A `Tensor` of size [batch_size, height, width, channels]. It is
assumed that the images are centered between -1 and 1.
hparams: hparam object with params for discriminator
is_training: Specifies whether or not we're training or testing.
reuse: Whether to reuse variable scope
scope: An optional variable_scope.
Returns:
[batch size, 1] - logit output of discriminator.
"""
with tf.variable_scope(scope, 'discriminator', [images], reuse=reuse):
lrelu_partial = functools.partial(lrelu, leakiness=hparams.lrelu_leakiness)
with slim.arg_scope(
[slim.conv2d],
kernel_size=[hparams.discriminator_kernel_size] * 2,
activation_fn=lrelu_partial,
stride=2,
normalizer_fn=slim.batch_norm):
def add_noise(hidden, scope_num=None):
if scope_num:
hidden = slim.dropout(
hidden,
hparams.discriminator_dropout_keep_prob,
is_training=is_training,
scope='dropout_%s' % scope_num)
if hparams.discriminator_noise_stddev == 0:
return hidden
return hidden + tf.random_normal(
hidden.shape.as_list(),
mean=0.0,
stddev=hparams.discriminator_noise_stddev)
# As per the recommendation of the DCGAN paper, we don't use batch norm
# on the discriminator input (https://arxiv.org/pdf/1511.06434v2.pdf).
if hparams.discriminator_image_noise:
images = add_noise(images)
net = slim.conv2d(
images,
hparams.num_discriminator_filters,
normalizer_fn=None,
stride=hparams.discriminator_first_stride,
scope='conv1_stride%s' % hparams.discriminator_first_stride)
net = add_noise(net, 1)
block_id = 2
# Repeatedly stack
# discriminator_conv_block_size-1 conv layers with stride 1
# followed by a stride 2 layer
# Add (optional) noise at every point
while net.shape.as_list()[1] > hparams.projection_shape_size:
num_filters = int(hparams.num_discriminator_filters *
(hparams.discriminator_filter_factor**(block_id - 1)))
for conv_id in range(1, hparams.discriminator_conv_block_size):
net = slim.conv2d(
net,
num_filters,
stride=1,
scope='conv_%s_%s' % (block_id, conv_id))
if hparams.discriminator_do_pooling:
net = slim.conv2d(
net, num_filters, scope='conv_%s_prepool' % block_id)
net = slim.avg_pool2d(
net, kernel_size=[2, 2], stride=2, scope='pool_%s' % block_id)
else:
net = slim.conv2d(
net, num_filters, scope='conv_%s_stride2' % block_id)
net = add_noise(net, block_id)
block_id += 1
net = slim.flatten(net)
net = slim.fully_connected(
net,
1,
# Models with BN here generally produce noise
normalizer_fn=None,
activation_fn=None,
scope='fc_logit_out') # Returns logits!
return net
def dcgan_generator(images, output_shape, hparams, scope=None):
"""Transforms the visual style of the input images.
Args:
images: A `Tensor` of shape [batch_size, height, width, channels].
output_shape: A list or tuple of 3 elements: the output height, width and
number of channels.
hparams: hparams object with generator parameters
scope: Scope to place generator inside
Returns:
A `Tensor` of shape [batch_size, height, width, output_channels] which
represents the result of style transfer.
Raises:
ValueError: If `output_shape` is not a list or tuple or if it doesn't have
three elements or if `output_shape` or `images` arent square.
"""
if not isinstance(output_shape, (tuple, list)):
raise ValueError('output_shape must be a tuple or list.')
elif len(output_shape) != 3:
raise ValueError('output_shape must have three elements.')
if output_shape[0] != output_shape[1]:
raise ValueError('output_shape must be square')
if images.shape.as_list()[1] != images.shape.as_list()[2]:
raise ValueError('images height and width must match.')
outdim = output_shape[0]
indim = images.shape.as_list()[1]
num_iterations = int(math.ceil(math.log(float(outdim) / float(indim), 2.0)))
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
kernel_size=[hparams.generator_kernel_size] * 2,
stride=2):
with tf.variable_scope(scope or 'generator'):
net = images
# Repeatedly halve # filters until = hparams.decode_filters in last layer
for i in range(num_iterations):
num_filters = hparams.num_decoder_filters * 2**(num_iterations - i - 1)
net = slim.conv2d_transpose(net, num_filters, scope='deconv_%s' % i)
# Crop down to desired size (e.g. 32x32 -> 28x28)
dif = net.shape.as_list()[1] - outdim
low = dif / 2
high = net.shape.as_list()[1] - low
net = net[:, low:high, low:high, :]
# No batch norm on generator output
net = slim.conv2d(
net,
output_shape[2],
kernel_size=[1, 1],
stride=1,
normalizer_fn=None,
activation_fn=tf.tanh,
scope='conv_out')
return net
def dcgan(target_images, latent_vars, hparams, scope='dcgan'):
"""Creates the PixelDA model.
Args:
target_images: A `Tensor` of shape [batch_size, height, width, 3]
sampled from the image domain to which we want to transfer.
latent_vars: dictionary of 'key': Tensor of shape [batch_size, N]
hparams: The hyperparameter map.
scope: Surround generator component with this scope
Returns:
A dictionary of model outputs.
"""
proj_shape = [
hparams.projection_shape_size, hparams.projection_shape_size,
hparams.projection_shape_channels
]
source_volume = project_latent_vars(
hparams, proj_shape, latent_vars, combine_method='concat')
###################################################
# Transfer the source images to the target style. #
###################################################
with tf.variable_scope(scope, 'generator', [target_images]):
transferred_images = dcgan_generator(
source_volume,
output_shape=target_images.shape.as_list()[1:4],
hparams=hparams)
assert transferred_images.shape.as_list() == target_images.shape.as_list()
return {'transferred_images': transferred_images}
def resnet_generator(images, output_shape, hparams, latent_vars=None):
"""Creates a ResNet-based generator.
Args:
images: A `Tensor` of shape [batch_size, height, width, num_channels]
sampled from the image domain from which we want to transfer
output_shape: A length-3 array indicating the height, width and channels of
the output.
hparams: The hyperparameter map.
latent_vars: dictionary of 'key': Tensor of shape [batch_size, N]
Returns:
A dictionary of model outputs.
"""
with tf.variable_scope('generator'):
if latent_vars:
noise_channel = project_latent_vars(
hparams,
proj_shape=images.shape.as_list()[1:3] + [1],
latent_vars=latent_vars,
combine_method='concat')
images = tf.concat([images, noise_channel], 3)
transferred_images, end_points = resnet_stack(
images,
output_shape=output_shape,
hparams=hparams,
scope='resnet_stack')
end_points['transferred_images'] = transferred_images
return end_points
def residual_interpretation_block(images, hparams, scope):
"""Learns a residual image which is added to the incoming image.
Args:
images: A `Tensor` of size [batch_size, height, width, 3]
hparams: The hyperparameters struct.
scope: The name of the variable op scope.
Returns:
The updated images.
"""
with tf.variable_scope(scope):
with slim.arg_scope(
[slim.conv2d],
normalizer_fn=None,
kernel_size=[hparams.generator_kernel_size] * 2):
net = images
for _ in range(hparams.res_int_convs):
net = slim.conv2d(
net, hparams.res_int_filters, activation_fn=tf.nn.relu)
net = slim.conv2d(net, 3, activation_fn=tf.nn.tanh)
# Add the residual
images += net
# Clip the output
images = tf.maximum(images, -1.0)
images = tf.minimum(images, 1.0)
return images
def residual_interpretation_generator(images,
is_training,
hparams,
latent_vars=None):
"""Creates a generator producing purely residual transformations.
A residual generator differs from the resnet generator in that each 'block' of
the residual generator produces a residual image. Consequently, the 'progress'
of the model generation process can be directly observed at inference time,
making it easier to diagnose and understand.
Args:
images: A `Tensor` of shape [batch_size, height, width, num_channels]
sampled from the image domain from which we want to transfer. It is
assumed that the images are centered between -1 and 1.
is_training: whether or not the model is training.
hparams: The hyperparameter map.
latent_vars: dictionary of 'key': Tensor of shape [batch_size, N]
Returns:
A dictionary of model outputs.
"""
end_points = {}
with tf.variable_scope('generator'):
if latent_vars:
projected_latent = project_latent_vars(
hparams,
proj_shape=images.shape.as_list()[1:3] + [images.shape.as_list()[-1]],
latent_vars=latent_vars,
combine_method='sum')
images += projected_latent
with tf.variable_scope(None, 'residual_style_transfer', [images]):
for i in range(hparams.res_int_blocks):
images = residual_interpretation_block(images, hparams,
'residual_%d' % i)
end_points['transferred_images_%d' % i] = images
end_points['transferred_images'] = images
return end_points
def simple_generator(source_images, target_images, is_training, hparams,
latent_vars):
"""Simple generator architecture (stack of convs) for trying small models."""
end_points = {}
with tf.variable_scope('generator'):
feed_source_images = source_images
if latent_vars:
projected_latent = project_latent_vars(
hparams,
proj_shape=source_images.shape.as_list()[1:3] + [1],
latent_vars=latent_vars,
combine_method='concat')
feed_source_images = tf.concat([source_images, projected_latent], 3)
end_points = {}
###################################################
# Transfer the source images to the target style. #
###################################################
with slim.arg_scope(
[slim.conv2d],
normalizer_fn=slim.batch_norm,
stride=1,
kernel_size=[hparams.generator_kernel_size] * 2):
net = feed_source_images
# N convolutions
for i in range(1, hparams.simple_num_conv_layers):
normalizer_fn = None
if i != 0:
normalizer_fn = slim.batch_norm
net = slim.conv2d(
net,
hparams.simple_conv_filters,
normalizer_fn=normalizer_fn,
activation_fn=tf.nn.relu)
# Project back to right # image channels
net = slim.conv2d(
net,
target_images.shape.as_list()[-1],
kernel_size=[1, 1],
stride=1,
normalizer_fn=None,
activation_fn=tf.tanh,
scope='conv_out')
transferred_images = net
assert transferred_images.shape.as_list() == target_images.shape.as_list()
end_points['transferred_images'] = transferred_images
return end_points
|