Spaces:
Running
Running
# Copyright 2017 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Utilities for training adversarial text models.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import time | |
# Dependency imports | |
import numpy as np | |
import tensorflow as tf | |
flags = tf.app.flags | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string('master', '', 'Master address.') | |
flags.DEFINE_integer('task', 0, 'Task id of the replica running the training.') | |
flags.DEFINE_integer('ps_tasks', 0, 'Number of parameter servers.') | |
flags.DEFINE_string('train_dir', '/tmp/text_train', | |
'Directory for logs and checkpoints.') | |
flags.DEFINE_integer('max_steps', 1000000, 'Number of batches to run.') | |
flags.DEFINE_boolean('log_device_placement', False, | |
'Whether to log device placement.') | |
def run_training(train_op, | |
loss, | |
global_step, | |
variables_to_restore=None, | |
pretrained_model_dir=None): | |
"""Sets up and runs training loop.""" | |
tf.gfile.MakeDirs(FLAGS.train_dir) | |
# Create pretrain Saver | |
if pretrained_model_dir: | |
assert variables_to_restore | |
tf.logging.info('Will attempt restore from %s: %s', pretrained_model_dir, | |
variables_to_restore) | |
saver_for_restore = tf.train.Saver(variables_to_restore) | |
# Init ops | |
if FLAGS.sync_replicas: | |
local_init_op = tf.get_collection('local_init_op')[0] | |
ready_for_local_init_op = tf.get_collection('ready_for_local_init_op')[0] | |
else: | |
local_init_op = tf.train.Supervisor.USE_DEFAULT | |
ready_for_local_init_op = tf.train.Supervisor.USE_DEFAULT | |
is_chief = FLAGS.task == 0 | |
sv = tf.train.Supervisor( | |
logdir=FLAGS.train_dir, | |
is_chief=is_chief, | |
save_summaries_secs=30, | |
save_model_secs=30, | |
local_init_op=local_init_op, | |
ready_for_local_init_op=ready_for_local_init_op, | |
global_step=global_step) | |
# Delay starting standard services to allow possible pretrained model restore. | |
with sv.managed_session( | |
master=FLAGS.master, | |
config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement), | |
start_standard_services=False) as sess: | |
# Initialization | |
if is_chief: | |
if pretrained_model_dir: | |
maybe_restore_pretrained_model(sess, saver_for_restore, | |
pretrained_model_dir) | |
if FLAGS.sync_replicas: | |
sess.run(tf.get_collection('chief_init_op')[0]) | |
sv.start_standard_services(sess) | |
sv.start_queue_runners(sess) | |
# Training loop | |
global_step_val = 0 | |
while not sv.should_stop() and global_step_val < FLAGS.max_steps: | |
global_step_val = train_step(sess, train_op, loss, global_step) | |
# Final checkpoint | |
if is_chief and global_step_val >= FLAGS.max_steps: | |
sv.saver.save(sess, sv.save_path, global_step=global_step) | |
def maybe_restore_pretrained_model(sess, saver_for_restore, model_dir): | |
"""Restores pretrained model if there is no ckpt model.""" | |
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir) | |
checkpoint_exists = ckpt and ckpt.model_checkpoint_path | |
if checkpoint_exists: | |
tf.logging.info('Checkpoint exists in FLAGS.train_dir; skipping ' | |
'pretraining restore') | |
return | |
pretrain_ckpt = tf.train.get_checkpoint_state(model_dir) | |
if not (pretrain_ckpt and pretrain_ckpt.model_checkpoint_path): | |
raise ValueError( | |
'Asked to restore model from %s but no checkpoint found.' % model_dir) | |
saver_for_restore.restore(sess, pretrain_ckpt.model_checkpoint_path) | |
def train_step(sess, train_op, loss, global_step): | |
"""Runs a single training step.""" | |
start_time = time.time() | |
_, loss_val, global_step_val = sess.run([train_op, loss, global_step]) | |
duration = time.time() - start_time | |
# Logging | |
if global_step_val % 10 == 0: | |
examples_per_sec = FLAGS.batch_size / duration | |
sec_per_batch = float(duration) | |
format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') | |
tf.logging.info(format_str % (global_step_val, loss_val, examples_per_sec, | |
sec_per_batch)) | |
if np.isnan(loss_val): | |
raise OverflowError('Loss is nan') | |
return global_step_val | |