Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Functions to make unit testing easier.""" | |
import numpy as np | |
import io | |
from PIL import Image as PILImage | |
import tensorflow as tf | |
def create_random_image(image_format, shape): | |
"""Creates an image with random values. | |
Args: | |
image_format: An image format (PNG or JPEG). | |
shape: A tuple with image shape (including channels). | |
Returns: | |
A tuple (<numpy ndarray>, <a string with encoded image>) | |
""" | |
image = np.random.randint(low=0, high=255, size=shape, dtype='uint8') | |
fd = io.BytesIO() | |
image_pil = PILImage.fromarray(image) | |
image_pil.save(fd, image_format, subsampling=0, quality=100) | |
return image, fd.getvalue() | |
def create_serialized_example(name_to_values): | |
"""Creates a tf.Example proto using a dictionary. | |
It automatically detects type of values and define a corresponding feature. | |
Args: | |
name_to_values: A dictionary. | |
Returns: | |
tf.Example proto. | |
""" | |
example = tf.train.Example() | |
for name, values in name_to_values.items(): | |
feature = example.features.feature[name] | |
if isinstance(values[0], str) or isinstance(values[0], bytes): | |
add = feature.bytes_list.value.extend | |
elif isinstance(values[0], float): | |
add = feature.float32_list.value.extend | |
elif isinstance(values[0], int): | |
add = feature.int64_list.value.extend | |
else: | |
raise AssertionError('Unsupported type: %s' % type(values[0])) | |
add(values) | |
return example.SerializeToString() | |