Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Functions to build the Attention OCR model. | |
Usage example: | |
ocr_model = model.Model(num_char_classes, seq_length, num_of_views) | |
data = ... # create namedtuple InputEndpoints | |
endpoints = model.create_base(data.images, data.labels_one_hot) | |
# endpoints.predicted_chars is a tensor with predicted character codes. | |
total_loss = model.create_loss(data, endpoints) | |
""" | |
import sys | |
import collections | |
import logging | |
import tensorflow as tf | |
from tensorflow.contrib import slim | |
from tensorflow.contrib.slim.nets import inception | |
import metrics | |
import sequence_layers | |
import utils | |
OutputEndpoints = collections.namedtuple('OutputEndpoints', [ | |
'chars_logit', 'chars_log_prob', 'predicted_chars', 'predicted_scores', | |
'predicted_text' | |
]) | |
# TODO(gorban): replace with tf.HParams when it is released. | |
ModelParams = collections.namedtuple('ModelParams', [ | |
'num_char_classes', 'seq_length', 'num_views', 'null_code' | |
]) | |
ConvTowerParams = collections.namedtuple('ConvTowerParams', ['final_endpoint']) | |
SequenceLogitsParams = collections.namedtuple('SequenceLogitsParams', [ | |
'use_attention', 'use_autoregression', 'num_lstm_units', 'weight_decay', | |
'lstm_state_clip_value' | |
]) | |
SequenceLossParams = collections.namedtuple('SequenceLossParams', [ | |
'label_smoothing', 'ignore_nulls', 'average_across_timesteps' | |
]) | |
EncodeCoordinatesParams = collections.namedtuple('EncodeCoordinatesParams', [ | |
'enabled' | |
]) | |
def _dict_to_array(id_to_char, default_character): | |
num_char_classes = max(id_to_char.keys()) + 1 | |
array = [default_character] * num_char_classes | |
for k, v in id_to_char.items(): | |
array[k] = v | |
return array | |
class CharsetMapper(object): | |
"""A simple class to map tensor ids into strings. | |
It works only when the character set is 1:1 mapping between individual | |
characters and individual ids. | |
Make sure you call tf.tables_initializer().run() as part of the init op. | |
""" | |
def __init__(self, charset, default_character='?'): | |
"""Creates a lookup table. | |
Args: | |
charset: a dictionary with id-to-character mapping. | |
""" | |
mapping_strings = tf.constant(_dict_to_array(charset, default_character)) | |
self.table = tf.contrib.lookup.index_to_string_table_from_tensor( | |
mapping=mapping_strings, default_value=default_character) | |
def get_text(self, ids): | |
"""Returns a string corresponding to a sequence of character ids. | |
Args: | |
ids: a tensor with shape [batch_size, max_sequence_length] | |
""" | |
return tf.reduce_join( | |
self.table.lookup(tf.to_int64(ids)), reduction_indices=1) | |
def get_softmax_loss_fn(label_smoothing): | |
"""Returns sparse or dense loss function depending on the label_smoothing. | |
Args: | |
label_smoothing: weight for label smoothing | |
Returns: | |
a function which takes labels and predictions as arguments and returns | |
a softmax loss for the selected type of labels (sparse or dense). | |
""" | |
if label_smoothing > 0: | |
def loss_fn(labels, logits): | |
return (tf.nn.softmax_cross_entropy_with_logits( | |
logits=logits, labels=labels)) | |
else: | |
def loss_fn(labels, logits): | |
return tf.nn.sparse_softmax_cross_entropy_with_logits( | |
logits=logits, labels=labels) | |
return loss_fn | |
class Model(object): | |
"""Class to create the Attention OCR Model.""" | |
def __init__(self, | |
num_char_classes, | |
seq_length, | |
num_views, | |
null_code, | |
mparams=None, | |
charset=None): | |
"""Initialized model parameters. | |
Args: | |
num_char_classes: size of character set. | |
seq_length: number of characters in a sequence. | |
num_views: Number of views (conv towers) to use. | |
null_code: A character code corresponding to a character which | |
indicates end of a sequence. | |
mparams: a dictionary with hyper parameters for methods, keys - | |
function names, values - corresponding namedtuples. | |
charset: an optional dictionary with a mapping between character ids and | |
utf8 strings. If specified the OutputEndpoints.predicted_text will | |
utf8 encoded strings corresponding to the character ids returned by | |
OutputEndpoints.predicted_chars (by default the predicted_text contains | |
an empty vector). | |
NOTE: Make sure you call tf.tables_initializer().run() if the charset | |
specified. | |
""" | |
super(Model, self).__init__() | |
self._params = ModelParams( | |
num_char_classes=num_char_classes, | |
seq_length=seq_length, | |
num_views=num_views, | |
null_code=null_code) | |
self._mparams = self.default_mparams() | |
if mparams: | |
self._mparams.update(mparams) | |
self._charset = charset | |
def default_mparams(self): | |
return { | |
'conv_tower_fn': | |
ConvTowerParams(final_endpoint='Mixed_5d'), | |
'sequence_logit_fn': | |
SequenceLogitsParams( | |
use_attention=True, | |
use_autoregression=True, | |
num_lstm_units=256, | |
weight_decay=0.00004, | |
lstm_state_clip_value=10.0), | |
'sequence_loss_fn': | |
SequenceLossParams( | |
label_smoothing=0.1, | |
ignore_nulls=True, | |
average_across_timesteps=False), | |
'encode_coordinates_fn': EncodeCoordinatesParams(enabled=False) | |
} | |
def set_mparam(self, function, **kwargs): | |
self._mparams[function] = self._mparams[function]._replace(**kwargs) | |
def conv_tower_fn(self, images, is_training=True, reuse=None): | |
"""Computes convolutional features using the InceptionV3 model. | |
Args: | |
images: A tensor of shape [batch_size, height, width, channels]. | |
is_training: whether is training or not. | |
reuse: whether or not the network and its variables should be reused. To | |
be able to reuse 'scope' must be given. | |
Returns: | |
A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of | |
output feature map and N is number of output features (depends on the | |
network architecture). | |
""" | |
mparams = self._mparams['conv_tower_fn'] | |
logging.debug('Using final_endpoint=%s', mparams.final_endpoint) | |
with tf.variable_scope('conv_tower_fn/INCE'): | |
if reuse: | |
tf.get_variable_scope().reuse_variables() | |
with slim.arg_scope(inception.inception_v3_arg_scope()): | |
with slim.arg_scope([slim.batch_norm, slim.dropout], | |
is_training=is_training): | |
net, _ = inception.inception_v3_base( | |
images, final_endpoint=mparams.final_endpoint) | |
return net | |
def _create_lstm_inputs(self, net): | |
"""Splits an input tensor into a list of tensors (features). | |
Args: | |
net: A feature map of shape [batch_size, num_features, feature_size]. | |
Raises: | |
AssertionError: if num_features is less than seq_length. | |
Returns: | |
A list with seq_length tensors of shape [batch_size, feature_size] | |
""" | |
num_features = net.get_shape().dims[1].value | |
if num_features < self._params.seq_length: | |
raise AssertionError('Incorrect dimension #1 of input tensor' | |
' %d should be bigger than %d (shape=%s)' % | |
(num_features, self._params.seq_length, | |
net.get_shape())) | |
elif num_features > self._params.seq_length: | |
logging.warning('Ignoring some features: use %d of %d (shape=%s)', | |
self._params.seq_length, num_features, net.get_shape()) | |
net = tf.slice(net, [0, 0, 0], [-1, self._params.seq_length, -1]) | |
return tf.unstack(net, axis=1) | |
def sequence_logit_fn(self, net, labels_one_hot): | |
mparams = self._mparams['sequence_logit_fn'] | |
# TODO(gorban): remove /alias suffixes from the scopes. | |
with tf.variable_scope('sequence_logit_fn/SQLR'): | |
layer_class = sequence_layers.get_layer_class(mparams.use_attention, | |
mparams.use_autoregression) | |
layer = layer_class(net, labels_one_hot, self._params, mparams) | |
return layer.create_logits() | |
def max_pool_views(self, nets_list): | |
"""Max pool across all nets in spatial dimensions. | |
Args: | |
nets_list: A list of 4D tensors with identical size. | |
Returns: | |
A tensor with the same size as any input tensors. | |
""" | |
batch_size, height, width, num_features = [ | |
d.value for d in nets_list[0].get_shape().dims | |
] | |
xy_flat_shape = (batch_size, 1, height * width, num_features) | |
nets_for_merge = [] | |
with tf.variable_scope('max_pool_views', values=nets_list): | |
for net in nets_list: | |
nets_for_merge.append(tf.reshape(net, xy_flat_shape)) | |
merged_net = tf.concat(nets_for_merge, 1) | |
net = slim.max_pool2d( | |
merged_net, kernel_size=[len(nets_list), 1], stride=1) | |
net = tf.reshape(net, (batch_size, height, width, num_features)) | |
return net | |
def pool_views_fn(self, nets): | |
"""Combines output of multiple convolutional towers into a single tensor. | |
It stacks towers one on top another (in height dim) in a 4x1 grid. | |
The order is arbitrary design choice and shouldn't matter much. | |
Args: | |
nets: list of tensors of shape=[batch_size, height, width, num_features]. | |
Returns: | |
A tensor of shape [batch_size, seq_length, features_size]. | |
""" | |
with tf.variable_scope('pool_views_fn/STCK'): | |
net = tf.concat(nets, 1) | |
batch_size = net.get_shape().dims[0].value | |
feature_size = net.get_shape().dims[3].value | |
return tf.reshape(net, [batch_size, -1, feature_size]) | |
def char_predictions(self, chars_logit): | |
"""Returns confidence scores (softmax values) for predicted characters. | |
Args: | |
chars_logit: chars logits, a tensor with shape | |
[batch_size x seq_length x num_char_classes] | |
Returns: | |
A tuple (ids, log_prob, scores), where: | |
ids - predicted characters, a int32 tensor with shape | |
[batch_size x seq_length]; | |
log_prob - a log probability of all characters, a float tensor with | |
shape [batch_size, seq_length, num_char_classes]; | |
scores - corresponding confidence scores for characters, a float | |
tensor | |
with shape [batch_size x seq_length]. | |
""" | |
log_prob = utils.logits_to_log_prob(chars_logit) | |
ids = tf.to_int32(tf.argmax(log_prob, axis=2), name='predicted_chars') | |
mask = tf.cast( | |
slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool) | |
all_scores = tf.nn.softmax(chars_logit) | |
selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores') | |
scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length)) | |
return ids, log_prob, scores | |
def encode_coordinates_fn(self, net): | |
"""Adds one-hot encoding of coordinates to different views in the networks. | |
For each "pixel" of a feature map it adds a onehot encoded x and y | |
coordinates. | |
Args: | |
net: a tensor of shape=[batch_size, height, width, num_features] | |
Returns: | |
a tensor with the same height and width, but altered feature_size. | |
""" | |
mparams = self._mparams['encode_coordinates_fn'] | |
if mparams.enabled: | |
batch_size, h, w, _ = net.shape.as_list() | |
x, y = tf.meshgrid(tf.range(w), tf.range(h)) | |
w_loc = slim.one_hot_encoding(x, num_classes=w) | |
h_loc = slim.one_hot_encoding(y, num_classes=h) | |
loc = tf.concat([h_loc, w_loc], 2) | |
loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1]) | |
return tf.concat([net, loc], 3) | |
else: | |
return net | |
def create_base(self, | |
images, | |
labels_one_hot, | |
scope='AttentionOcr_v1', | |
reuse=None): | |
"""Creates a base part of the Model (no gradients, losses or summaries). | |
Args: | |
images: A tensor of shape [batch_size, height, width, channels]. | |
labels_one_hot: Optional (can be None) one-hot encoding for ground truth | |
labels. If provided the function will create a model for training. | |
scope: Optional variable_scope. | |
reuse: whether or not the network and its variables should be reused. To | |
be able to reuse 'scope' must be given. | |
Returns: | |
A named tuple OutputEndpoints. | |
""" | |
logging.debug('images: %s', images) | |
is_training = labels_one_hot is not None | |
with tf.variable_scope(scope, reuse=reuse): | |
views = tf.split( | |
value=images, num_or_size_splits=self._params.num_views, axis=2) | |
logging.debug('Views=%d single view: %s', len(views), views[0]) | |
nets = [ | |
self.conv_tower_fn(v, is_training, reuse=(i != 0)) | |
for i, v in enumerate(views) | |
] | |
logging.debug('Conv tower: %s', nets[0]) | |
nets = [self.encode_coordinates_fn(net) for net in nets] | |
logging.debug('Conv tower w/ encoded coordinates: %s', nets[0]) | |
net = self.pool_views_fn(nets) | |
logging.debug('Pooled views: %s', net) | |
chars_logit = self.sequence_logit_fn(net, labels_one_hot) | |
logging.debug('chars_logit: %s', chars_logit) | |
predicted_chars, chars_log_prob, predicted_scores = ( | |
self.char_predictions(chars_logit)) | |
if self._charset: | |
character_mapper = CharsetMapper(self._charset) | |
predicted_text = character_mapper.get_text(predicted_chars) | |
else: | |
predicted_text = tf.constant([]) | |
return OutputEndpoints( | |
chars_logit=chars_logit, | |
chars_log_prob=chars_log_prob, | |
predicted_chars=predicted_chars, | |
predicted_scores=predicted_scores, | |
predicted_text=predicted_text) | |
def create_loss(self, data, endpoints): | |
"""Creates all losses required to train the model. | |
Args: | |
data: InputEndpoints namedtuple. | |
endpoints: Model namedtuple. | |
Returns: | |
Total loss. | |
""" | |
# NOTE: the return value of ModelLoss is not used directly for the | |
# gradient computation because under the hood it calls slim.losses.AddLoss, | |
# which registers the loss in an internal collection and later returns it | |
# as part of GetTotalLoss. We need to use total loss because model may have | |
# multiple losses including regularization losses. | |
self.sequence_loss_fn(endpoints.chars_logit, data.labels) | |
total_loss = slim.losses.get_total_loss() | |
tf.summary.scalar('TotalLoss', total_loss) | |
return total_loss | |
def label_smoothing_regularization(self, chars_labels, weight=0.1): | |
"""Applies a label smoothing regularization. | |
Uses the same method as in https://arxiv.org/abs/1512.00567. | |
Args: | |
chars_labels: ground truth ids of charactes, | |
shape=[batch_size, seq_length]; | |
weight: label-smoothing regularization weight. | |
Returns: | |
A sensor with the same shape as the input. | |
""" | |
one_hot_labels = tf.one_hot( | |
chars_labels, depth=self._params.num_char_classes, axis=-1) | |
pos_weight = 1.0 - weight | |
neg_weight = weight / self._params.num_char_classes | |
return one_hot_labels * pos_weight + neg_weight | |
def sequence_loss_fn(self, chars_logits, chars_labels): | |
"""Loss function for char sequence. | |
Depending on values of hyper parameters it applies label smoothing and can | |
also ignore all null chars after the first one. | |
Args: | |
chars_logits: logits for predicted characters, | |
shape=[batch_size, seq_length, num_char_classes]; | |
chars_labels: ground truth ids of characters, | |
shape=[batch_size, seq_length]; | |
mparams: method hyper parameters. | |
Returns: | |
A Tensor with shape [batch_size] - the log-perplexity for each sequence. | |
""" | |
mparams = self._mparams['sequence_loss_fn'] | |
with tf.variable_scope('sequence_loss_fn/SLF'): | |
if mparams.label_smoothing > 0: | |
smoothed_one_hot_labels = self.label_smoothing_regularization( | |
chars_labels, mparams.label_smoothing) | |
labels_list = tf.unstack(smoothed_one_hot_labels, axis=1) | |
else: | |
# NOTE: in case of sparse softmax we are not using one-hot | |
# encoding. | |
labels_list = tf.unstack(chars_labels, axis=1) | |
batch_size, seq_length, _ = chars_logits.shape.as_list() | |
if mparams.ignore_nulls: | |
weights = tf.ones((batch_size, seq_length), dtype=tf.float32) | |
else: | |
# Suppose that reject character is the last in the charset. | |
reject_char = tf.constant( | |
self._params.num_char_classes - 1, | |
shape=(batch_size, seq_length), | |
dtype=tf.int64) | |
known_char = tf.not_equal(chars_labels, reject_char) | |
weights = tf.to_float(known_char) | |
logits_list = tf.unstack(chars_logits, axis=1) | |
weights_list = tf.unstack(weights, axis=1) | |
loss = tf.contrib.legacy_seq2seq.sequence_loss( | |
logits_list, | |
labels_list, | |
weights_list, | |
softmax_loss_function=get_softmax_loss_fn(mparams.label_smoothing), | |
average_across_timesteps=mparams.average_across_timesteps) | |
tf.losses.add_loss(loss) | |
return loss | |
def create_summaries(self, data, endpoints, charset, is_training): | |
"""Creates all summaries for the model. | |
Args: | |
data: InputEndpoints namedtuple. | |
endpoints: OutputEndpoints namedtuple. | |
charset: A dictionary with mapping between character codes and | |
unicode characters. Use the one provided by a dataset.charset. | |
is_training: If True will create summary prefixes for training job, | |
otherwise - for evaluation. | |
Returns: | |
A list of evaluation ops | |
""" | |
def sname(label): | |
prefix = 'train' if is_training else 'eval' | |
return '%s/%s' % (prefix, label) | |
max_outputs = 4 | |
# TODO(gorban): uncomment, when tf.summary.text released. | |
# charset_mapper = CharsetMapper(charset) | |
# pr_text = charset_mapper.get_text( | |
# endpoints.predicted_chars[:max_outputs,:]) | |
# tf.summary.text(sname('text/pr'), pr_text) | |
# gt_text = charset_mapper.get_text(data.labels[:max_outputs,:]) | |
# tf.summary.text(sname('text/gt'), gt_text) | |
tf.summary.image(sname('image'), data.images, max_outputs=max_outputs) | |
if is_training: | |
tf.summary.image( | |
sname('image/orig'), data.images_orig, max_outputs=max_outputs) | |
for var in tf.trainable_variables(): | |
tf.summary.histogram(var.op.name, var) | |
return None | |
else: | |
names_to_values = {} | |
names_to_updates = {} | |
def use_metric(name, value_update_tuple): | |
names_to_values[name] = value_update_tuple[0] | |
names_to_updates[name] = value_update_tuple[1] | |
use_metric('CharacterAccuracy', | |
metrics.char_accuracy( | |
endpoints.predicted_chars, | |
data.labels, | |
streaming=True, | |
rej_char=self._params.null_code)) | |
# Sequence accuracy computed by cutting sequence at the first null char | |
use_metric('SequenceAccuracy', | |
metrics.sequence_accuracy( | |
endpoints.predicted_chars, | |
data.labels, | |
streaming=True, | |
rej_char=self._params.null_code)) | |
for name, value in names_to_values.items(): | |
summary_name = 'eval/' + name | |
tf.summary.scalar(summary_name, tf.Print(value, [value], summary_name)) | |
return list(names_to_updates.values()) | |
def create_init_fn_to_restore(self, master_checkpoint, | |
inception_checkpoint=None): | |
"""Creates an init operations to restore weights from various checkpoints. | |
Args: | |
master_checkpoint: path to a checkpoint which contains all weights for | |
the whole model. | |
inception_checkpoint: path to a checkpoint which contains weights for the | |
inception part only. | |
Returns: | |
a function to run initialization ops. | |
""" | |
all_assign_ops = [] | |
all_feed_dict = {} | |
def assign_from_checkpoint(variables, checkpoint): | |
logging.info('Request to re-store %d weights from %s', | |
len(variables), checkpoint) | |
if not variables: | |
logging.error('Can\'t find any variables to restore.') | |
sys.exit(1) | |
assign_op, feed_dict = slim.assign_from_checkpoint(checkpoint, variables) | |
all_assign_ops.append(assign_op) | |
all_feed_dict.update(feed_dict) | |
logging.info('variables_to_restore:\n%s' % utils.variables_to_restore().keys()) | |
logging.info('moving_average_variables:\n%s' % [v.op.name for v in tf.moving_average_variables()]) | |
logging.info('trainable_variables:\n%s' % [v.op.name for v in tf.trainable_variables()]) | |
if master_checkpoint: | |
assign_from_checkpoint(utils.variables_to_restore(), master_checkpoint) | |
if inception_checkpoint: | |
variables = utils.variables_to_restore( | |
'AttentionOcr_v1/conv_tower_fn/INCE', strip_scope=True) | |
assign_from_checkpoint(variables, inception_checkpoint) | |
def init_assign_fn(sess): | |
logging.info('Restoring checkpoint(s)') | |
sess.run(all_assign_ops, all_feed_dict) | |
return init_assign_fn | |