NCTC / models /research /autoaugment /augmentation_transforms.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
13.8 kB
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Transforms used in the Augmentation Policies."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
# pylint:disable=g-multiple-import
from PIL import ImageOps, ImageEnhance, ImageFilter, Image
# pylint:enable=g-multiple-import
IMAGE_SIZE = 32
# What is the dataset mean and std of the images on the training set
MEANS = [0.49139968, 0.48215841, 0.44653091]
STDS = [0.24703223, 0.24348513, 0.26158784]
PARAMETER_MAX = 10 # What is the max 'level' a transform could be predicted
def random_flip(x):
"""Flip the input x horizontally with 50% probability."""
if np.random.rand(1)[0] > 0.5:
return np.fliplr(x)
return x
def zero_pad_and_crop(img, amount=4):
"""Zero pad by `amount` zero pixels on each side then take a random crop.
Args:
img: numpy image that will be zero padded and cropped.
amount: amount of zeros to pad `img` with horizontally and verically.
Returns:
The cropped zero padded img. The returned numpy array will be of the same
shape as `img`.
"""
padded_img = np.zeros((img.shape[0] + amount * 2, img.shape[1] + amount * 2,
img.shape[2]))
padded_img[amount:img.shape[0] + amount, amount:
img.shape[1] + amount, :] = img
top = np.random.randint(low=0, high=2 * amount)
left = np.random.randint(low=0, high=2 * amount)
new_img = padded_img[top:top + img.shape[0], left:left + img.shape[1], :]
return new_img
def create_cutout_mask(img_height, img_width, num_channels, size):
"""Creates a zero mask used for cutout of shape `img_height` x `img_width`.
Args:
img_height: Height of image cutout mask will be applied to.
img_width: Width of image cutout mask will be applied to.
num_channels: Number of channels in the image.
size: Size of the zeros mask.
Returns:
A mask of shape `img_height` x `img_width` with all ones except for a
square of zeros of shape `size` x `size`. This mask is meant to be
elementwise multiplied with the original image. Additionally returns
the `upper_coord` and `lower_coord` which specify where the cutout mask
will be applied.
"""
assert img_height == img_width
# Sample center where cutout mask will be applied
height_loc = np.random.randint(low=0, high=img_height)
width_loc = np.random.randint(low=0, high=img_width)
# Determine upper right and lower left corners of patch
upper_coord = (max(0, height_loc - size // 2), max(0, width_loc - size // 2))
lower_coord = (min(img_height, height_loc + size // 2),
min(img_width, width_loc + size // 2))
mask_height = lower_coord[0] - upper_coord[0]
mask_width = lower_coord[1] - upper_coord[1]
assert mask_height > 0
assert mask_width > 0
mask = np.ones((img_height, img_width, num_channels))
zeros = np.zeros((mask_height, mask_width, num_channels))
mask[upper_coord[0]:lower_coord[0], upper_coord[1]:lower_coord[1], :] = (
zeros)
return mask, upper_coord, lower_coord
def cutout_numpy(img, size=16):
"""Apply cutout with mask of shape `size` x `size` to `img`.
The cutout operation is from the paper https://arxiv.org/abs/1708.04552.
This operation applies a `size`x`size` mask of zeros to a random location
within `img`.
Args:
img: Numpy image that cutout will be applied to.
size: Height/width of the cutout mask that will be
Returns:
A numpy tensor that is the result of applying the cutout mask to `img`.
"""
img_height, img_width, num_channels = (img.shape[0], img.shape[1],
img.shape[2])
assert len(img.shape) == 3
mask, _, _ = create_cutout_mask(img_height, img_width, num_channels, size)
return img * mask
def float_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled
to level/PARAMETER_MAX.
Returns:
A float that results from scaling `maxval` according to `level`.
"""
return float(level) * maxval / PARAMETER_MAX
def int_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be between [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be scaled
to level/PARAMETER_MAX.
Returns:
An int that results from scaling `maxval` according to `level`.
"""
return int(level * maxval / PARAMETER_MAX)
def pil_wrap(img):
"""Convert the `img` numpy tensor to a PIL Image."""
return Image.fromarray(
np.uint8((img * STDS + MEANS) * 255.0)).convert('RGBA')
def pil_unwrap(pil_img):
"""Converts the PIL img to a numpy array."""
pic_array = (np.array(pil_img.getdata()).reshape((32, 32, 4)) / 255.0)
i1, i2 = np.where(pic_array[:, :, 3] == 0)
pic_array = (pic_array[:, :, :3] - MEANS) / STDS
pic_array[i1, i2] = [0, 0, 0]
return pic_array
def apply_policy(policy, img):
"""Apply the `policy` to the numpy `img`.
Args:
policy: A list of tuples with the form (name, probability, level) where
`name` is the name of the augmentation operation to apply, `probability`
is the probability of applying the operation and `level` is what strength
the operation to apply.
img: Numpy image that will have `policy` applied to it.
Returns:
The result of applying `policy` to `img`.
"""
pil_img = pil_wrap(img)
for xform in policy:
assert len(xform) == 3
name, probability, level = xform
xform_fn = NAME_TO_TRANSFORM[name].pil_transformer(probability, level)
pil_img = xform_fn(pil_img)
return pil_unwrap(pil_img)
class TransformFunction(object):
"""Wraps the Transform function for pretty printing options."""
def __init__(self, func, name):
self.f = func
self.name = name
def __repr__(self):
return '<' + self.name + '>'
def __call__(self, pil_img):
return self.f(pil_img)
class TransformT(object):
"""Each instance of this class represents a specific transform."""
def __init__(self, name, xform_fn):
self.name = name
self.xform = xform_fn
def pil_transformer(self, probability, level):
def return_function(im):
if random.random() < probability:
im = self.xform(im, level)
return im
name = self.name + '({:.1f},{})'.format(probability, level)
return TransformFunction(return_function, name)
def do_transform(self, image, level):
f = self.pil_transformer(PARAMETER_MAX, level)
return pil_unwrap(f(pil_wrap(image)))
################## Transform Functions ##################
identity = TransformT('identity', lambda pil_img, level: pil_img)
flip_lr = TransformT(
'FlipLR',
lambda pil_img, level: pil_img.transpose(Image.FLIP_LEFT_RIGHT))
flip_ud = TransformT(
'FlipUD',
lambda pil_img, level: pil_img.transpose(Image.FLIP_TOP_BOTTOM))
# pylint:disable=g-long-lambda
auto_contrast = TransformT(
'AutoContrast',
lambda pil_img, level: ImageOps.autocontrast(
pil_img.convert('RGB')).convert('RGBA'))
equalize = TransformT(
'Equalize',
lambda pil_img, level: ImageOps.equalize(
pil_img.convert('RGB')).convert('RGBA'))
invert = TransformT(
'Invert',
lambda pil_img, level: ImageOps.invert(
pil_img.convert('RGB')).convert('RGBA'))
# pylint:enable=g-long-lambda
blur = TransformT(
'Blur', lambda pil_img, level: pil_img.filter(ImageFilter.BLUR))
smooth = TransformT(
'Smooth',
lambda pil_img, level: pil_img.filter(ImageFilter.SMOOTH))
def _rotate_impl(pil_img, level):
"""Rotates `pil_img` from -30 to 30 degrees depending on `level`."""
degrees = int_parameter(level, 30)
if random.random() > 0.5:
degrees = -degrees
return pil_img.rotate(degrees)
rotate = TransformT('Rotate', _rotate_impl)
def _posterize_impl(pil_img, level):
"""Applies PIL Posterize to `pil_img`."""
level = int_parameter(level, 4)
return ImageOps.posterize(pil_img.convert('RGB'), 4 - level).convert('RGBA')
posterize = TransformT('Posterize', _posterize_impl)
def _shear_x_impl(pil_img, level):
"""Applies PIL ShearX to `pil_img`.
The ShearX operation shears the image along the horizontal axis with `level`
magnitude.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had ShearX applied to it.
"""
level = float_parameter(level, 0.3)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, level, 0, 0, 1, 0))
shear_x = TransformT('ShearX', _shear_x_impl)
def _shear_y_impl(pil_img, level):
"""Applies PIL ShearY to `pil_img`.
The ShearY operation shears the image along the vertical axis with `level`
magnitude.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had ShearX applied to it.
"""
level = float_parameter(level, 0.3)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, 0, 0, level, 1, 0))
shear_y = TransformT('ShearY', _shear_y_impl)
def _translate_x_impl(pil_img, level):
"""Applies PIL TranslateX to `pil_img`.
Translate the image in the horizontal direction by `level`
number of pixels.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had TranslateX applied to it.
"""
level = int_parameter(level, 10)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, 0, level, 0, 1, 0))
translate_x = TransformT('TranslateX', _translate_x_impl)
def _translate_y_impl(pil_img, level):
"""Applies PIL TranslateY to `pil_img`.
Translate the image in the vertical direction by `level`
number of pixels.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had TranslateY applied to it.
"""
level = int_parameter(level, 10)
if random.random() > 0.5:
level = -level
return pil_img.transform((32, 32), Image.AFFINE, (1, 0, 0, 0, 1, level))
translate_y = TransformT('TranslateY', _translate_y_impl)
def _crop_impl(pil_img, level, interpolation=Image.BILINEAR):
"""Applies a crop to `pil_img` with the size depending on the `level`."""
cropped = pil_img.crop((level, level, IMAGE_SIZE - level, IMAGE_SIZE - level))
resized = cropped.resize((IMAGE_SIZE, IMAGE_SIZE), interpolation)
return resized
crop_bilinear = TransformT('CropBilinear', _crop_impl)
def _solarize_impl(pil_img, level):
"""Applies PIL Solarize to `pil_img`.
Translate the image in the vertical direction by `level`
number of pixels.
Args:
pil_img: Image in PIL object.
level: Strength of the operation specified as an Integer from
[0, `PARAMETER_MAX`].
Returns:
A PIL Image that has had Solarize applied to it.
"""
level = int_parameter(level, 256)
return ImageOps.solarize(pil_img.convert('RGB'), 256 - level).convert('RGBA')
solarize = TransformT('Solarize', _solarize_impl)
def _cutout_pil_impl(pil_img, level):
"""Apply cutout to pil_img at the specified level."""
size = int_parameter(level, 20)
if size <= 0:
return pil_img
img_height, img_width, num_channels = (32, 32, 3)
_, upper_coord, lower_coord = (
create_cutout_mask(img_height, img_width, num_channels, size))
pixels = pil_img.load() # create the pixel map
for i in range(upper_coord[0], lower_coord[0]): # for every col:
for j in range(upper_coord[1], lower_coord[1]): # For every row
pixels[i, j] = (125, 122, 113, 0) # set the colour accordingly
return pil_img
cutout = TransformT('Cutout', _cutout_pil_impl)
def _enhancer_impl(enhancer):
"""Sets level to be between 0.1 and 1.8 for ImageEnhance transforms of PIL."""
def impl(pil_img, level):
v = float_parameter(level, 1.8) + .1 # going to 0 just destroys it
return enhancer(pil_img).enhance(v)
return impl
color = TransformT('Color', _enhancer_impl(ImageEnhance.Color))
contrast = TransformT('Contrast', _enhancer_impl(ImageEnhance.Contrast))
brightness = TransformT('Brightness', _enhancer_impl(
ImageEnhance.Brightness))
sharpness = TransformT('Sharpness', _enhancer_impl(ImageEnhance.Sharpness))
ALL_TRANSFORMS = [
flip_lr,
flip_ud,
auto_contrast,
equalize,
invert,
rotate,
posterize,
crop_bilinear,
solarize,
color,
contrast,
brightness,
sharpness,
shear_x,
shear_y,
translate_x,
translate_y,
cutout,
blur,
smooth
]
NAME_TO_TRANSFORM = {t.name: t for t in ALL_TRANSFORMS}
TRANSFORM_NAMES = NAME_TO_TRANSFORM.keys()