Spaces:
Running
Running
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Contains a factory for building various models.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
from preprocessing import cifarnet_preprocessing | |
from preprocessing import inception_preprocessing | |
from preprocessing import lenet_preprocessing | |
from preprocessing import vgg_preprocessing | |
slim = tf.contrib.slim | |
def get_preprocessing(name, is_training=False): | |
"""Returns preprocessing_fn(image, height, width, **kwargs). | |
Args: | |
name: The name of the preprocessing function. | |
is_training: `True` if the model is being used for training and `False` | |
otherwise. | |
Returns: | |
preprocessing_fn: A function that preprocessing a single image (pre-batch). | |
It has the following signature: | |
image = preprocessing_fn(image, output_height, output_width, ...). | |
Raises: | |
ValueError: If Preprocessing `name` is not recognized. | |
""" | |
preprocessing_fn_map = { | |
'cifarnet': cifarnet_preprocessing, | |
'inception': inception_preprocessing, | |
'inception_v1': inception_preprocessing, | |
'inception_v2': inception_preprocessing, | |
'inception_v3': inception_preprocessing, | |
'inception_v4': inception_preprocessing, | |
'inception_resnet_v2': inception_preprocessing, | |
'lenet': lenet_preprocessing, | |
'mobilenet_v1': inception_preprocessing, | |
'nasnet_mobile': inception_preprocessing, | |
'nasnet_large': inception_preprocessing, | |
'pnasnet_large': inception_preprocessing, | |
'resnet_v1_50': vgg_preprocessing, | |
'resnet_v1_101': vgg_preprocessing, | |
'resnet_v1_152': vgg_preprocessing, | |
'resnet_v1_200': vgg_preprocessing, | |
'resnet_v2_50': vgg_preprocessing, | |
'resnet_v2_101': vgg_preprocessing, | |
'resnet_v2_152': vgg_preprocessing, | |
'resnet_v2_200': vgg_preprocessing, | |
'vgg': vgg_preprocessing, | |
'vgg_a': vgg_preprocessing, | |
'vgg_16': vgg_preprocessing, | |
'vgg_19': vgg_preprocessing, | |
} | |
if name not in preprocessing_fn_map: | |
raise ValueError('Preprocessing name [%s] was not recognized' % name) | |
def preprocessing_fn(image, output_height, output_width, **kwargs): | |
return preprocessing_fn_map[name].preprocess_image( | |
image, output_height, output_width, is_training=is_training, **kwargs) | |
return preprocessing_fn | |