Spaces:
Running
Running
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
# | |
# This script is used to run local test on PASCAL VOC 2012 using MobileNet-v2. | |
# Users could also modify from this script for their use case. | |
# | |
# Usage: | |
# # From the tensorflow/models/research/deeplab directory. | |
# sh ./local_test_mobilenetv2.sh | |
# | |
# | |
# Exit immediately if a command exits with a non-zero status. | |
set -e | |
# Move one-level up to tensorflow/models/research directory. | |
cd .. | |
# Update PYTHONPATH. | |
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim | |
# Set up the working environment. | |
CURRENT_DIR=$(pwd) | |
WORK_DIR="${CURRENT_DIR}/deeplab" | |
# Run model_test first to make sure the PYTHONPATH is correctly set. | |
python "${WORK_DIR}"/model_test.py -v | |
# Go to datasets folder and download PASCAL VOC 2012 segmentation dataset. | |
DATASET_DIR="datasets" | |
cd "${WORK_DIR}/${DATASET_DIR}" | |
sh download_and_convert_voc2012.sh | |
# Go back to original directory. | |
cd "${CURRENT_DIR}" | |
# Set up the working directories. | |
PASCAL_FOLDER="pascal_voc_seg" | |
EXP_FOLDER="exp/train_on_trainval_set_mobilenetv2" | |
INIT_FOLDER="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/init_models" | |
TRAIN_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/train" | |
EVAL_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/eval" | |
VIS_LOGDIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/vis" | |
EXPORT_DIR="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/${EXP_FOLDER}/export" | |
mkdir -p "${INIT_FOLDER}" | |
mkdir -p "${TRAIN_LOGDIR}" | |
mkdir -p "${EVAL_LOGDIR}" | |
mkdir -p "${VIS_LOGDIR}" | |
mkdir -p "${EXPORT_DIR}" | |
# Copy locally the trained checkpoint as the initial checkpoint. | |
TF_INIT_ROOT="http://download.tensorflow.org/models" | |
CKPT_NAME="deeplabv3_mnv2_pascal_train_aug" | |
TF_INIT_CKPT="${CKPT_NAME}_2018_01_29.tar.gz" | |
cd "${INIT_FOLDER}" | |
wget -nd -c "${TF_INIT_ROOT}/${TF_INIT_CKPT}" | |
tar -xf "${TF_INIT_CKPT}" | |
cd "${CURRENT_DIR}" | |
PASCAL_DATASET="${WORK_DIR}/${DATASET_DIR}/${PASCAL_FOLDER}/tfrecord" | |
# Train 10 iterations. | |
NUM_ITERATIONS=10 | |
python "${WORK_DIR}"/train.py \ | |
--logtostderr \ | |
--train_split="trainval" \ | |
--model_variant="mobilenet_v2" \ | |
--output_stride=16 \ | |
--train_crop_size="513,513" \ | |
--train_batch_size=4 \ | |
--training_number_of_steps="${NUM_ITERATIONS}" \ | |
--fine_tune_batch_norm=true \ | |
--tf_initial_checkpoint="${INIT_FOLDER}/${CKPT_NAME}/model.ckpt-30000" \ | |
--train_logdir="${TRAIN_LOGDIR}" \ | |
--dataset_dir="${PASCAL_DATASET}" | |
# Run evaluation. This performs eval over the full val split (1449 images) and | |
# will take a while. | |
# Using the provided checkpoint, one should expect mIOU=75.34%. | |
python "${WORK_DIR}"/eval.py \ | |
--logtostderr \ | |
--eval_split="val" \ | |
--model_variant="mobilenet_v2" \ | |
--eval_crop_size="513,513" \ | |
--checkpoint_dir="${TRAIN_LOGDIR}" \ | |
--eval_logdir="${EVAL_LOGDIR}" \ | |
--dataset_dir="${PASCAL_DATASET}" \ | |
--max_number_of_evaluations=1 | |
# Visualize the results. | |
python "${WORK_DIR}"/vis.py \ | |
--logtostderr \ | |
--vis_split="val" \ | |
--model_variant="mobilenet_v2" \ | |
--vis_crop_size="513,513" \ | |
--checkpoint_dir="${TRAIN_LOGDIR}" \ | |
--vis_logdir="${VIS_LOGDIR}" \ | |
--dataset_dir="${PASCAL_DATASET}" \ | |
--max_number_of_iterations=1 | |
# Export the trained checkpoint. | |
CKPT_PATH="${TRAIN_LOGDIR}/model.ckpt-${NUM_ITERATIONS}" | |
EXPORT_PATH="${EXPORT_DIR}/frozen_inference_graph.pb" | |
python "${WORK_DIR}"/export_model.py \ | |
--logtostderr \ | |
--checkpoint_path="${CKPT_PATH}" \ | |
--export_path="${EXPORT_PATH}" \ | |
--model_variant="mobilenet_v2" \ | |
--num_classes=21 \ | |
--crop_size=513 \ | |
--crop_size=513 \ | |
--inference_scales=1.0 | |
# Run inference with the exported checkpoint. | |
# Please refer to the provided deeplab_demo.ipynb for an example. | |