Spaces:
Running
Running
# Lint as: python2, python3 | |
# Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Saves an annotation as one png image. | |
This script saves an annotation as one png image, and has the option to add | |
colormap to the png image for better visualization. | |
""" | |
import numpy as np | |
import PIL.Image as img | |
import tensorflow as tf | |
from deeplab.utils import get_dataset_colormap | |
def save_annotation(label, | |
save_dir, | |
filename, | |
add_colormap=True, | |
normalize_to_unit_values=False, | |
scale_values=False, | |
colormap_type=get_dataset_colormap.get_pascal_name()): | |
"""Saves the given label to image on disk. | |
Args: | |
label: The numpy array to be saved. The data will be converted | |
to uint8 and saved as png image. | |
save_dir: String, the directory to which the results will be saved. | |
filename: String, the image filename. | |
add_colormap: Boolean, add color map to the label or not. | |
normalize_to_unit_values: Boolean, normalize the input values to [0, 1]. | |
scale_values: Boolean, scale the input values to [0, 255] for visualization. | |
colormap_type: String, colormap type for visualization. | |
""" | |
# Add colormap for visualizing the prediction. | |
if add_colormap: | |
colored_label = get_dataset_colormap.label_to_color_image( | |
label, colormap_type) | |
else: | |
colored_label = label | |
if normalize_to_unit_values: | |
min_value = np.amin(colored_label) | |
max_value = np.amax(colored_label) | |
range_value = max_value - min_value | |
if range_value != 0: | |
colored_label = (colored_label - min_value) / range_value | |
if scale_values: | |
colored_label = 255. * colored_label | |
pil_image = img.fromarray(colored_label.astype(dtype=np.uint8)) | |
with tf.gfile.Open('%s/%s.png' % (save_dir, filename), mode='w') as f: | |
pil_image.save(f, 'PNG') | |