NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
2.97 kB
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from environments.ant_maze_env import AntMazeEnv
from environments.point_maze_env import PointMazeEnv
import tensorflow as tf
import gin.tf
from tf_agents.environments import gym_wrapper
from tf_agents.environments import tf_py_environment
@gin.configurable
def create_maze_env(env_name=None, top_down_view=False):
n_bins = 0
manual_collision = False
if env_name.startswith('Ego'):
n_bins = 8
env_name = env_name[3:]
if env_name.startswith('Ant'):
cls = AntMazeEnv
env_name = env_name[3:]
maze_size_scaling = 8
elif env_name.startswith('Point'):
cls = PointMazeEnv
manual_collision = True
env_name = env_name[5:]
maze_size_scaling = 4
else:
assert False, 'unknown env %s' % env_name
maze_id = None
observe_blocks = False
put_spin_near_agent = False
if env_name == 'Maze':
maze_id = 'Maze'
elif env_name == 'Push':
maze_id = 'Push'
elif env_name == 'Fall':
maze_id = 'Fall'
elif env_name == 'Block':
maze_id = 'Block'
put_spin_near_agent = True
observe_blocks = True
elif env_name == 'BlockMaze':
maze_id = 'BlockMaze'
put_spin_near_agent = True
observe_blocks = True
else:
raise ValueError('Unknown maze environment %s' % env_name)
gym_mujoco_kwargs = {
'maze_id': maze_id,
'n_bins': n_bins,
'observe_blocks': observe_blocks,
'put_spin_near_agent': put_spin_near_agent,
'top_down_view': top_down_view,
'manual_collision': manual_collision,
'maze_size_scaling': maze_size_scaling
}
gym_env = cls(**gym_mujoco_kwargs)
gym_env.reset()
wrapped_env = gym_wrapper.GymWrapper(gym_env)
return wrapped_env
class TFPyEnvironment(tf_py_environment.TFPyEnvironment):
def __init__(self, *args, **kwargs):
super(TFPyEnvironment, self).__init__(*args, **kwargs)
def start_collect(self):
pass
def current_obs(self):
time_step = self.current_time_step()
return time_step.observation[0] # For some reason, there is an extra dim.
def step(self, actions):
actions = tf.expand_dims(actions, 0)
next_step = super(TFPyEnvironment, self).step(actions)
return next_step.is_last()[0], next_step.reward[0], next_step.discount[0]
def reset(self):
return super(TFPyEnvironment, self).reset()