NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
7.4 kB
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions to generate or load datasets for supervised learning."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import namedtuple
import numpy as np
from sklearn.datasets import make_classification
MAX_SEED = 4294967295
class Dataset(namedtuple("Dataset", "data labels")):
"""Helper class for managing a supervised learning dataset.
Args:
data: an array of type float32 with N samples, each of which is the set
of features for that sample. (Shape (N, D_i), where N is the number of
samples and D_i is the number of features for that sample.)
labels: an array of type int32 or int64 with N elements, indicating the
class label for the corresponding set of features in data.
"""
# Since this is an immutable object, we don't need to reserve slots.
__slots__ = ()
@property
def size(self):
"""Dataset size (number of samples)."""
return len(self.data)
def batch_indices(self, num_batches, batch_size):
"""Creates indices of shuffled minibatches.
Args:
num_batches: the number of batches to generate
batch_size: the size of each batch
Returns:
batch_indices: a list of minibatch indices, arranged so that the dataset
is randomly shuffled.
Raises:
ValueError: if the data and labels have different lengths
"""
if len(self.data) != len(self.labels):
raise ValueError("Labels and data must have the same number of samples.")
batch_indices = []
# Follows logic in mnist.py to ensure we cover the entire dataset.
index_in_epoch = 0
dataset_size = len(self.data)
dataset_indices = np.arange(dataset_size)
np.random.shuffle(dataset_indices)
for _ in range(num_batches):
start = index_in_epoch
index_in_epoch += batch_size
if index_in_epoch > dataset_size:
# Finished epoch, reshuffle.
np.random.shuffle(dataset_indices)
# Start next epoch.
start = 0
index_in_epoch = batch_size
end = index_in_epoch
batch_indices.append(dataset_indices[start:end].tolist())
return batch_indices
def noisy_parity_class(n_samples,
n_classes=2,
n_context_ids=5,
noise_prob=0.25,
random_seed=None):
"""Returns a randomly generated sparse-to-sparse dataset.
The label is a parity class of a set of context classes.
Args:
n_samples: number of samples (data points)
n_classes: number of class labels (default: 2)
n_context_ids: how many classes to take the parity of (default: 5).
noise_prob: how often to corrupt the label (default: 0.25)
random_seed: seed used for drawing the random data (default: None)
Returns:
dataset: A Dataset namedtuple containing the generated data and labels
"""
np.random.seed(random_seed)
x = np.random.randint(0, n_classes, [n_samples, n_context_ids])
noise = np.random.binomial(1, noise_prob, [n_samples])
y = (np.sum(x, 1) + noise) % n_classes
return Dataset(x.astype("float32"), y.astype("int32"))
def random(n_features, n_samples, n_classes=2, sep=1.0, random_seed=None):
"""Returns a randomly generated classification dataset.
Args:
n_features: number of features (dependent variables)
n_samples: number of samples (data points)
n_classes: number of class labels (default: 2)
sep: separation of the two classes, a higher value corresponds to
an easier classification problem (default: 1.0)
random_seed: seed used for drawing the random data (default: None)
Returns:
dataset: A Dataset namedtuple containing the generated data and labels
"""
# Generate the problem data.
x, y = make_classification(n_samples=n_samples,
n_features=n_features,
n_informative=n_features,
n_redundant=0,
n_classes=n_classes,
class_sep=sep,
random_state=random_seed)
return Dataset(x.astype("float32"), y.astype("int32"))
def random_binary(n_features, n_samples, random_seed=None):
"""Returns a randomly generated dataset of binary values.
Args:
n_features: number of features (dependent variables)
n_samples: number of samples (data points)
random_seed: seed used for drawing the random data (default: None)
Returns:
dataset: A Dataset namedtuple containing the generated data and labels
"""
random_seed = (np.random.randint(MAX_SEED) if random_seed is None
else random_seed)
np.random.seed(random_seed)
x = np.random.randint(2, size=(n_samples, n_features))
y = np.zeros((n_samples, 1))
return Dataset(x.astype("float32"), y.astype("int32"))
def random_symmetric(n_features, n_samples, random_seed=None):
"""Returns a randomly generated dataset of values and their negatives.
Args:
n_features: number of features (dependent variables)
n_samples: number of samples (data points)
random_seed: seed used for drawing the random data (default: None)
Returns:
dataset: A Dataset namedtuple containing the generated data and labels
"""
random_seed = (np.random.randint(MAX_SEED) if random_seed is None
else random_seed)
np.random.seed(random_seed)
x1 = np.random.normal(size=(int(n_samples/2), n_features))
x = np.concatenate((x1, -x1), axis=0)
y = np.zeros((n_samples, 1))
return Dataset(x.astype("float32"), y.astype("int32"))
def random_mlp(n_features, n_samples, random_seed=None, n_layers=6, width=20):
"""Returns a generated output of an MLP with random weights.
Args:
n_features: number of features (dependent variables)
n_samples: number of samples (data points)
random_seed: seed used for drawing the random data (default: None)
n_layers: number of layers in random MLP
width: width of the layers in random MLP
Returns:
dataset: A Dataset namedtuple containing the generated data and labels
"""
random_seed = (np.random.randint(MAX_SEED) if random_seed is None
else random_seed)
np.random.seed(random_seed)
x = np.random.normal(size=(n_samples, n_features))
y = x
n_in = n_features
scale_factor = np.sqrt(2.) / np.sqrt(n_features)
for _ in range(n_layers):
weights = np.random.normal(size=(n_in, width)) * scale_factor
y = np.dot(y, weights).clip(min=0)
n_in = width
y = y[:, 0]
y[y > 0] = 1
return Dataset(x.astype("float32"), y.astype("int32"))
EMPTY_DATASET = Dataset(np.array([], dtype="float32"),
np.array([], dtype="int32"))