NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
15.6 kB
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
"""Memory module for storing "nearest neighbors".
Implements a key-value memory for generalized one-shot learning
as described in the paper
"Learning to Remember Rare Events"
by Lukasz Kaiser, Ofir Nachum, Aurko Roy, Samy Bengio,
published as a conference paper at ICLR 2017.
"""
import numpy as np
from six.moves import xrange
import tensorflow as tf
class Memory(object):
"""Memory module."""
def __init__(self, key_dim, memory_size, vocab_size,
choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
var_cache_device='', nn_device=''):
self.key_dim = key_dim
self.memory_size = memory_size
self.vocab_size = vocab_size
self.choose_k = min(choose_k, memory_size)
self.alpha = alpha
self.correct_in_top = correct_in_top
self.age_noise = age_noise
self.var_cache_device = var_cache_device # Variables are cached here.
self.nn_device = nn_device # Device to perform nearest neighbour matmul.
caching_device = var_cache_device if var_cache_device else None
self.update_memory = tf.constant(True) # Can be fed "false" if needed.
self.mem_keys = tf.get_variable(
'memkeys', [self.memory_size, self.key_dim], trainable=False,
initializer=tf.random_uniform_initializer(-0.0, 0.0),
caching_device=caching_device)
self.mem_vals = tf.get_variable(
'memvals', [self.memory_size], dtype=tf.int32, trainable=False,
initializer=tf.constant_initializer(0, tf.int32),
caching_device=caching_device)
self.mem_age = tf.get_variable(
'memage', [self.memory_size], dtype=tf.float32, trainable=False,
initializer=tf.constant_initializer(0.0), caching_device=caching_device)
self.recent_idx = tf.get_variable(
'recent_idx', [self.vocab_size], dtype=tf.int32, trainable=False,
initializer=tf.constant_initializer(0, tf.int32))
# variable for projecting query vector into memory key
self.query_proj = tf.get_variable(
'memory_query_proj', [self.key_dim, self.key_dim], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(0, 0.01),
caching_device=caching_device)
def get(self):
return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
def set(self, k, v, a, r=None):
return tf.group(
self.mem_keys.assign(k),
self.mem_vals.assign(v),
self.mem_age.assign(a),
(self.recent_idx.assign(r) if r is not None else tf.group()))
def clear(self):
return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
self.recent_idx])
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# look up in large memory, no gradients
with tf.device(self.nn_device):
similarities = tf.matmul(tf.stop_gradient(normalized_query),
self.mem_keys, transpose_b=True, name='nn_mmul')
_, hint_pool_idxs = tf.nn.top_k(
tf.stop_gradient(similarities), k=self.choose_k, name='nn_topk')
return hint_pool_idxs
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output):
"""Function that creates all the update ops."""
mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
dtype=tf.float32))
with tf.control_dependencies([mem_age_incr]):
mem_age_upd = tf.scatter_update(
self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))
mem_key_upd = tf.scatter_update(
self.mem_keys, upd_idxs, upd_keys)
mem_val_upd = tf.scatter_update(
self.mem_vals, upd_idxs, upd_vals)
if use_recent_idx:
recent_idx_upd = tf.scatter_update(
self.recent_idx, intended_output, upd_idxs)
else:
recent_idx_upd = tf.group()
return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd)
def query(self, query_vec, intended_output, use_recent_idx=True):
"""Queries memory for nearest neighbor.
Args:
query_vec: A batch of vectors to query (embedding of input to model).
intended_output: The values that would be the correct output of the
memory.
use_recent_idx: Whether to always insert at least one instance of a
correct memory fetch.
Returns:
A tuple (result, mask, teacher_loss).
result: The result of the memory look up.
mask: The affinity of the query to the result.
teacher_loss: The loss for training the memory module.
"""
batch_size = tf.shape(query_vec)[0]
output_given = intended_output is not None
# prepare query for memory lookup
query_vec = tf.matmul(query_vec, self.query_proj)
normalized_query = tf.nn.l2_normalize(query_vec, dim=1)
hint_pool_idxs = self.get_hint_pool_idxs(normalized_query)
if output_given and use_recent_idx: # add at least one correct memory
most_recent_hint_idx = tf.gather(self.recent_idx, intended_output)
hint_pool_idxs = tf.concat(
axis=1,
values=[hint_pool_idxs, tf.expand_dims(most_recent_hint_idx, 1)])
choose_k = tf.shape(hint_pool_idxs)[1]
with tf.device(self.var_cache_device):
# create small memory and look up with gradients
my_mem_keys = tf.stop_gradient(tf.gather(self.mem_keys, hint_pool_idxs,
name='my_mem_keys_gather'))
similarities = tf.matmul(tf.expand_dims(normalized_query, 1),
my_mem_keys, adjoint_b=True, name='batch_mmul')
hint_pool_sims = tf.squeeze(similarities, [1], name='hint_pool_sims')
hint_pool_mem_vals = tf.gather(self.mem_vals, hint_pool_idxs,
name='hint_pool_mem_vals')
# Calculate softmax mask on the top-k if requested.
# Softmax temperature. Say we have K elements at dist x and one at (x+a).
# Softmax of the last is e^tm(x+a)/Ke^tm*x + e^tm(x+a) = e^tm*a/K+e^tm*a.
# To make that 20% we'd need to have e^tm*a ~= 0.2K, so tm = log(0.2K)/a.
softmax_temp = max(1.0, np.log(0.2 * self.choose_k) / self.alpha)
mask = tf.nn.softmax(hint_pool_sims[:, :choose_k - 1] * softmax_temp)
# prepare returned values
nearest_neighbor = tf.to_int32(
tf.argmax(hint_pool_sims[:, :choose_k - 1], 1))
no_teacher_idxs = tf.gather(
tf.reshape(hint_pool_idxs, [-1]),
nearest_neighbor + choose_k * tf.range(batch_size))
with tf.device(self.var_cache_device):
result = tf.gather(self.mem_vals, tf.reshape(no_teacher_idxs, [-1]))
if not output_given:
teacher_loss = None
return result, mask, teacher_loss
# prepare hints from the teacher on hint pool
teacher_hints = tf.to_float(
tf.abs(tf.expand_dims(intended_output, 1) - hint_pool_mem_vals))
teacher_hints = 1.0 - tf.minimum(1.0, teacher_hints)
teacher_vals, teacher_hint_idxs = tf.nn.top_k(
hint_pool_sims * teacher_hints, k=1)
neg_teacher_vals, _ = tf.nn.top_k(
hint_pool_sims * (1 - teacher_hints), k=1)
# bring back idxs to full memory
teacher_idxs = tf.gather(
tf.reshape(hint_pool_idxs, [-1]),
teacher_hint_idxs[:, 0] + choose_k * tf.range(batch_size))
# zero-out teacher_vals if there are no hints
teacher_vals *= (
1 - tf.to_float(tf.equal(0.0, tf.reduce_sum(teacher_hints, 1))))
# we'll determine whether to do an update to memory based on whether
# memory was queried correctly
sliced_hints = tf.slice(teacher_hints, [0, 0], [-1, self.correct_in_top])
incorrect_memory_lookup = tf.equal(0.0, tf.reduce_sum(sliced_hints, 1))
# loss based on triplet loss
teacher_loss = (tf.nn.relu(neg_teacher_vals - teacher_vals + self.alpha)
- self.alpha)
# prepare memory updates
update_keys = normalized_query
update_vals = intended_output
fetched_idxs = teacher_idxs # correctly fetched from memory
with tf.device(self.var_cache_device):
fetched_keys = tf.gather(self.mem_keys, fetched_idxs, name='fetched_keys')
fetched_vals = tf.gather(self.mem_vals, fetched_idxs, name='fetched_vals')
# do memory updates here
fetched_keys_upd = update_keys + fetched_keys # Momentum-like update
fetched_keys_upd = tf.nn.l2_normalize(fetched_keys_upd, dim=1)
# Randomize age a bit, e.g., to select different ones in parallel workers.
mem_age_with_noise = self.mem_age + tf.random_uniform(
[self.memory_size], - self.age_noise, self.age_noise)
_, oldest_idxs = tf.nn.top_k(mem_age_with_noise, k=batch_size, sorted=False)
with tf.control_dependencies([result]):
upd_idxs = tf.where(incorrect_memory_lookup,
oldest_idxs,
fetched_idxs)
# upd_idxs = tf.Print(upd_idxs, [upd_idxs], "UPD IDX", summarize=8)
upd_keys = tf.where(incorrect_memory_lookup,
update_keys,
fetched_keys_upd)
upd_vals = tf.where(incorrect_memory_lookup,
update_vals,
fetched_vals)
def make_update_op():
return self.make_update_op(upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output)
update_op = tf.cond(self.update_memory, make_update_op, tf.no_op)
with tf.control_dependencies([update_op]):
result = tf.identity(result)
mask = tf.identity(mask)
teacher_loss = tf.identity(teacher_loss)
return result, mask, tf.reduce_mean(teacher_loss)
class LSHMemory(Memory):
"""Memory employing locality sensitive hashing.
Note: Not fully tested.
"""
def __init__(self, key_dim, memory_size, vocab_size,
choose_k=256, alpha=0.1, correct_in_top=1, age_noise=8.0,
var_cache_device='', nn_device='',
num_hashes=None, num_libraries=None):
super(LSHMemory, self).__init__(
key_dim, memory_size, vocab_size,
choose_k=choose_k, alpha=alpha, correct_in_top=1, age_noise=age_noise,
var_cache_device=var_cache_device, nn_device=nn_device)
self.num_libraries = num_libraries or int(self.choose_k ** 0.5)
self.num_per_hash_slot = max(1, self.choose_k // self.num_libraries)
self.num_hashes = (num_hashes or
int(np.log2(self.memory_size / self.num_per_hash_slot)))
self.num_hashes = min(max(self.num_hashes, 1), 20)
self.num_hash_slots = 2 ** self.num_hashes
# hashing vectors
self.hash_vecs = [
tf.get_variable(
'hash_vecs%d' % i, [self.num_hashes, self.key_dim],
dtype=tf.float32, trainable=False,
initializer=tf.truncated_normal_initializer(0, 1))
for i in xrange(self.num_libraries)]
# map representing which hash slots map to which mem keys
self.hash_slots = [
tf.get_variable(
'hash_slots%d' % i, [self.num_hash_slots, self.num_per_hash_slot],
dtype=tf.int32, trainable=False,
initializer=tf.random_uniform_initializer(maxval=self.memory_size,
dtype=tf.int32))
for i in xrange(self.num_libraries)]
def get(self): # not implemented
return self.mem_keys, self.mem_vals, self.mem_age, self.recent_idx
def set(self, k, v, a, r=None): # not implemented
return tf.group(
self.mem_keys.assign(k),
self.mem_vals.assign(v),
self.mem_age.assign(a),
(self.recent_idx.assign(r) if r is not None else tf.group()))
def clear(self):
return tf.variables_initializer([self.mem_keys, self.mem_vals, self.mem_age,
self.recent_idx] + self.hash_slots)
def get_hash_slots(self, query):
"""Gets hashed-to buckets for batch of queries.
Args:
query: 2-d Tensor of query vectors.
Returns:
A list of hashed-to buckets for each hash function.
"""
binary_hash = [
tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
for i in xrange(self.num_libraries)]
hash_slot_idxs = [
tf.reduce_sum(
tf.to_int32(binary_hash[i]) *
tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
dtype=tf.int32), 1)
for i in xrange(self.num_libraries)]
return hash_slot_idxs
def get_hint_pool_idxs(self, normalized_query):
"""Get small set of idxs to compute nearest neighbor queries on.
This is an expensive look-up on the whole memory that is used to
avoid more expensive operations later on.
Args:
normalized_query: A Tensor of shape [None, key_dim].
Returns:
A Tensor of shape [None, choose_k] of indices in memory
that are closest to the queries.
"""
# get hash of query vecs
hash_slot_idxs = self.get_hash_slots(normalized_query)
# grab mem idxs in the hash slots
hint_pool_idxs = [
tf.maximum(tf.minimum(
tf.gather(self.hash_slots[i], idxs),
self.memory_size - 1), 0)
for i, idxs in enumerate(hash_slot_idxs)]
return tf.concat(axis=1, values=hint_pool_idxs)
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output):
"""Function that creates all the update ops."""
base_update_op = super(LSHMemory, self).make_update_op(
upd_idxs, upd_keys, upd_vals,
batch_size, use_recent_idx, intended_output)
# compute hash slots to be updated
hash_slot_idxs = self.get_hash_slots(upd_keys)
# make updates
update_ops = []
with tf.control_dependencies([base_update_op]):
for i, slot_idxs in enumerate(hash_slot_idxs):
# for each slot, choose which entry to replace
entry_idx = tf.random_uniform([batch_size],
maxval=self.num_per_hash_slot,
dtype=tf.int32)
entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot,
dtype=tf.int32)
entry_add = (tf.expand_dims(upd_idxs, 1) *
tf.one_hot(entry_idx, self.num_per_hash_slot,
dtype=tf.int32))
mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul)
with tf.control_dependencies([mul_op]):
add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add)
update_ops.append(add_op)
return tf.group(*update_ops)