Spaces:
Running
Running
# Copyright 2018 Google, Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import collections | |
import numpy as np | |
import sonnet as snt | |
import tensorflow as tf | |
from learning_unsupervised_learning import optimizers | |
from learning_unsupervised_learning import utils | |
from learning_unsupervised_learning import summary_utils | |
from learning_unsupervised_learning import variable_replace | |
class MultiTrialMetaObjective(snt.AbstractModule): | |
def __init__(self, samples_per_class, averages, **kwargs): | |
self.samples_per_class = samples_per_class | |
self.averages = averages | |
self.dataset_map = {} | |
super(MultiTrialMetaObjective, | |
self).__init__(**kwargs) | |
def _build(self, dataset, feature_transformer): | |
if self.samples_per_class is not None: | |
if dataset not in self.dataset_map: | |
# datasets are outside of frames from while loops | |
with tf.control_dependencies(None): | |
self.dataset_map[dataset] = utils.sample_n_per_class( | |
dataset, self.samples_per_class) | |
dataset = self.dataset_map[dataset] | |
stats = collections.defaultdict(list) | |
losses = [] | |
# TODO(lmetz) move this to ingraph control flow? | |
for _ in xrange(self.averages): | |
loss, stat = self._build_once(dataset, feature_transformer) | |
losses.append(loss) | |
for k, v in stat.items(): | |
stats[k].append(v) | |
stats = {k: tf.add_n(v) / float(len(v)) for k, v in stats.items()} | |
for k, v in stats.items(): | |
tf.summary.scalar(k, v) | |
return tf.add_n(losses) / float(len(losses)) | |
def local_variables(self): | |
"""List of variables that need to be updated for each evaluation. | |
These variables should not be stored on a parameter server and | |
should be reset every computation of a meta_objective loss. | |
Returns: | |
vars: list of tf.Variable | |
""" | |
return list( | |
snt.get_variables_in_module(self, tf.GraphKeys.TRAINABLE_VARIABLES)) | |
def remote_variables(self): | |
return [] | |