NCTC / models /research /lexnet_nc /learn_classifier.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
8.01 kB
#!/usr/bin/env python
# Copyright 2017, 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains the integrated LexNET classifier."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import lexnet_common
import lexnet_model
import path_model
from sklearn import metrics
import tensorflow as tf
tf.flags.DEFINE_string(
'dataset_dir', 'datasets',
'Dataset base directory')
tf.flags.DEFINE_string(
'dataset', 'tratz/fine_grained',
'Subdirectory containing the corpus directories: '
'subdirectory of dataset_dir')
tf.flags.DEFINE_string(
'corpus', 'wiki/random',
'Subdirectory containing the corpus and split: '
'subdirectory of dataset_dir/dataset')
tf.flags.DEFINE_string(
'embeddings_base_path', 'embeddings',
'Embeddings base directory')
tf.flags.DEFINE_string(
'logdir', 'logdir',
'Directory of model output files')
tf.flags.DEFINE_string('hparams', '', 'Hyper-parameters')
tf.flags.DEFINE_string(
'input', 'integrated',
'The model(dist/dist-nc/path/integrated/integrated-nc')
FLAGS = tf.flags.FLAGS
def main(_):
# Pick up any one-off hyper-parameters.
hparams = lexnet_model.LexNETModel.default_hparams()
hparams.corpus = FLAGS.corpus
hparams.input = FLAGS.input
hparams.path_embeddings_file = 'path_embeddings/%s/%s' % (
FLAGS.dataset, FLAGS.corpus)
input_dir = hparams.input if hparams.input != 'path' else 'path_classifier'
# Set the number of classes
classes_filename = os.path.join(
FLAGS.dataset_dir, FLAGS.dataset, 'classes.txt')
with open(classes_filename) as f_in:
classes = f_in.read().splitlines()
hparams.num_classes = len(classes)
print('Model will predict into %d classes' % hparams.num_classes)
# Get the datasets
train_set, val_set, test_set = (
os.path.join(
FLAGS.dataset_dir, FLAGS.dataset, FLAGS.corpus,
filename + '.tfrecs.gz')
for filename in ['train', 'val', 'test'])
print('Running with hyper-parameters: {}'.format(hparams))
# Load the instances
print('Loading instances...')
opts = tf.python_io.TFRecordOptions(
compression_type=tf.python_io.TFRecordCompressionType.GZIP)
train_instances = list(tf.python_io.tf_record_iterator(train_set, opts))
val_instances = list(tf.python_io.tf_record_iterator(val_set, opts))
test_instances = list(tf.python_io.tf_record_iterator(test_set, opts))
# Load the word embeddings
print('Loading word embeddings...')
relata_embeddings, path_embeddings, nc_embeddings, path_to_index = (
None, None, None, None)
if hparams.input in ['dist', 'dist-nc', 'integrated', 'integrated-nc']:
relata_embeddings = lexnet_common.load_word_embeddings(
FLAGS.embeddings_base_path, hparams.relata_embeddings_file)
if hparams.input in ['path', 'integrated', 'integrated-nc']:
path_embeddings, path_to_index = path_model.load_path_embeddings(
os.path.join(FLAGS.embeddings_base_path, hparams.path_embeddings_file),
hparams.path_dim)
if hparams.input in ['dist-nc', 'integrated-nc']:
nc_embeddings = lexnet_common.load_word_embeddings(
FLAGS.embeddings_base_path, hparams.nc_embeddings_file)
# Define the graph and the model
with tf.Graph().as_default():
model = lexnet_model.LexNETModel(
hparams, relata_embeddings, path_embeddings,
nc_embeddings, path_to_index)
# Initialize a session and start training
session = tf.Session()
session.run(tf.global_variables_initializer())
# Initalize the path mapping
if hparams.input in ['path', 'integrated', 'integrated-nc']:
session.run(tf.tables_initializer())
session.run(model.initialize_path_op, {
model.path_initial_value_t: path_embeddings
})
# Initialize the NC embeddings
if hparams.input in ['dist-nc', 'integrated-nc']:
session.run(model.initialize_nc_op, {
model.nc_initial_value_t: nc_embeddings
})
# Load the labels
print('Loading labels...')
train_labels = model.load_labels(session, train_instances)
val_labels = model.load_labels(session, val_instances)
test_labels = model.load_labels(session, test_instances)
save_path = '{logdir}/results/{dataset}/{input}/{corpus}'.format(
logdir=FLAGS.logdir, dataset=FLAGS.dataset,
corpus=model.hparams.corpus, input=input_dir)
if not os.path.exists(save_path):
os.makedirs(save_path)
# Train the model
print('Training the model...')
model.fit(session, train_instances, epoch_completed,
val_instances, val_labels, save_path)
# Print the best performance on the validation set
print('Best performance on the validation set: F1=%.3f' %
epoch_completed.best_f1)
# Evaluate on the train and validation sets
lexnet_common.full_evaluation(model, session, train_instances, train_labels,
'Train', classes)
lexnet_common.full_evaluation(model, session, val_instances, val_labels,
'Validation', classes)
test_predictions = lexnet_common.full_evaluation(
model, session, test_instances, test_labels, 'Test', classes)
# Write the test predictions to a file
predictions_file = os.path.join(save_path, 'test_predictions.tsv')
print('Saving test predictions to %s' % save_path)
test_pairs = model.load_pairs(session, test_instances)
lexnet_common.write_predictions(test_pairs, test_labels, test_predictions,
classes, predictions_file)
def epoch_completed(model, session, epoch, epoch_loss,
val_instances, val_labels, save_path):
"""Runs every time an epoch completes.
Print the performance on the validation set, and update the saved model if
its performance is better on the previous ones. If the performance dropped,
tell the training to stop.
Args:
model: The currently trained path-based model.
session: The current TensorFlow session.
epoch: The epoch number.
epoch_loss: The current epoch loss.
val_instances: The validation set instances (evaluation between epochs).
val_labels: The validation set labels (for evaluation between epochs).
save_path: Where to save the model.
Returns:
whether the training should stop.
"""
stop_training = False
# Evaluate on the validation set
val_pred = model.predict(session, val_instances)
precision, recall, f1, _ = metrics.precision_recall_fscore_support(
val_labels, val_pred, average='weighted')
print(
'Epoch: %d/%d, Loss: %f, validation set: P: %.3f, R: %.3f, F1: %.3f\n' % (
epoch + 1, model.hparams.num_epochs, epoch_loss,
precision, recall, f1))
# If the F1 is much smaller than the previous one, stop training. Else, if
# it's bigger, save the model.
if f1 < epoch_completed.best_f1 - 0.08:
stop_training = True
if f1 > epoch_completed.best_f1:
saver = tf.train.Saver()
checkpoint_filename = os.path.join(save_path, 'best.ckpt')
print('Saving model in: %s' % checkpoint_filename)
saver.save(session, checkpoint_filename)
print('Model saved in file: %s' % checkpoint_filename)
epoch_completed.best_f1 = f1
return stop_training
epoch_completed.best_f1 = 0
if __name__ == '__main__':
tf.app.run(main)