Spaces:
Running
Running
# Copyright 2016 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Author: aneelakantan (Arvind Neelakantan) | |
""" | |
import tensorflow as tf | |
def get_embedding(word, utility, params): | |
return tf.nn.embedding_lookup(params["word"], word) | |
def apply_dropout(x, dropout_rate, mode): | |
if (dropout_rate > 0.0): | |
if (mode == "train"): | |
x = tf.nn.dropout(x, dropout_rate) | |
else: | |
x = x | |
return x | |
def LSTMCell(x, mprev, cprev, key, params): | |
"""Create an LSTM cell. | |
Implements the equations in pg.2 from | |
"Long Short-Term Memory Based Recurrent Neural Network Architectures | |
For Large Vocabulary Speech Recognition", | |
Hasim Sak, Andrew Senior, Francoise Beaufays. | |
Args: | |
w: A dictionary of the weights and optional biases as returned | |
by LSTMParametersSplit(). | |
x: Inputs to this cell. | |
mprev: m_{t-1}, the recurrent activations (same as the output) | |
from the previous cell. | |
cprev: c_{t-1}, the cell activations from the previous cell. | |
keep_prob: Keep probability on the input and the outputs of a cell. | |
Returns: | |
m: Outputs of this cell. | |
c: Cell Activations. | |
""" | |
i = tf.matmul(x, params[key + "_ix"]) + tf.matmul(mprev, params[key + "_im"]) | |
i = tf.nn.bias_add(i, params[key + "_i"]) | |
f = tf.matmul(x, params[key + "_fx"]) + tf.matmul(mprev, params[key + "_fm"]) | |
f = tf.nn.bias_add(f, params[key + "_f"]) | |
c = tf.matmul(x, params[key + "_cx"]) + tf.matmul(mprev, params[key + "_cm"]) | |
c = tf.nn.bias_add(c, params[key + "_c"]) | |
o = tf.matmul(x, params[key + "_ox"]) + tf.matmul(mprev, params[key + "_om"]) | |
o = tf.nn.bias_add(o, params[key + "_o"]) | |
i = tf.sigmoid(i, name="i_gate") | |
f = tf.sigmoid(f, name="f_gate") | |
o = tf.sigmoid(o, name="o_gate") | |
c = f * cprev + i * tf.tanh(c) | |
m = o * c | |
return m, c | |