Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Utility functions for detection inference.""" | |
from __future__ import division | |
import tensorflow.compat.v1 as tf | |
from object_detection.core import standard_fields | |
def build_input(tfrecord_paths): | |
"""Builds the graph's input. | |
Args: | |
tfrecord_paths: List of paths to the input TFRecords | |
Returns: | |
serialized_example_tensor: The next serialized example. String scalar Tensor | |
image_tensor: The decoded image of the example. Uint8 tensor, | |
shape=[1, None, None,3] | |
""" | |
filename_queue = tf.train.string_input_producer( | |
tfrecord_paths, shuffle=False, num_epochs=1) | |
tf_record_reader = tf.TFRecordReader() | |
_, serialized_example_tensor = tf_record_reader.read(filename_queue) | |
features = tf.parse_single_example( | |
serialized_example_tensor, | |
features={ | |
standard_fields.TfExampleFields.image_encoded: | |
tf.FixedLenFeature([], tf.string), | |
}) | |
encoded_image = features[standard_fields.TfExampleFields.image_encoded] | |
image_tensor = tf.image.decode_image(encoded_image, channels=3) | |
image_tensor.set_shape([None, None, 3]) | |
image_tensor = tf.expand_dims(image_tensor, 0) | |
return serialized_example_tensor, image_tensor | |
def build_inference_graph(image_tensor, inference_graph_path): | |
"""Loads the inference graph and connects it to the input image. | |
Args: | |
image_tensor: The input image. uint8 tensor, shape=[1, None, None, 3] | |
inference_graph_path: Path to the inference graph with embedded weights | |
Returns: | |
detected_boxes_tensor: Detected boxes. Float tensor, | |
shape=[num_detections, 4] | |
detected_scores_tensor: Detected scores. Float tensor, | |
shape=[num_detections] | |
detected_labels_tensor: Detected labels. Int64 tensor, | |
shape=[num_detections] | |
""" | |
with tf.gfile.Open(inference_graph_path, 'rb') as graph_def_file: | |
graph_content = graph_def_file.read() | |
graph_def = tf.GraphDef() | |
graph_def.MergeFromString(graph_content) | |
tf.import_graph_def( | |
graph_def, name='', input_map={'image_tensor': image_tensor}) | |
g = tf.get_default_graph() | |
num_detections_tensor = tf.squeeze( | |
g.get_tensor_by_name('num_detections:0'), 0) | |
num_detections_tensor = tf.cast(num_detections_tensor, tf.int32) | |
detected_boxes_tensor = tf.squeeze( | |
g.get_tensor_by_name('detection_boxes:0'), 0) | |
detected_boxes_tensor = detected_boxes_tensor[:num_detections_tensor] | |
detected_scores_tensor = tf.squeeze( | |
g.get_tensor_by_name('detection_scores:0'), 0) | |
detected_scores_tensor = detected_scores_tensor[:num_detections_tensor] | |
detected_labels_tensor = tf.squeeze( | |
g.get_tensor_by_name('detection_classes:0'), 0) | |
detected_labels_tensor = tf.cast(detected_labels_tensor, tf.int64) | |
detected_labels_tensor = detected_labels_tensor[:num_detections_tensor] | |
return detected_boxes_tensor, detected_scores_tensor, detected_labels_tensor | |
def infer_detections_and_add_to_example( | |
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor, | |
detected_labels_tensor, discard_image_pixels): | |
"""Runs the supplied tensors and adds the inferred detections to the example. | |
Args: | |
serialized_example_tensor: Serialized TF example. Scalar string tensor | |
detected_boxes_tensor: Detected boxes. Float tensor, | |
shape=[num_detections, 4] | |
detected_scores_tensor: Detected scores. Float tensor, | |
shape=[num_detections] | |
detected_labels_tensor: Detected labels. Int64 tensor, | |
shape=[num_detections] | |
discard_image_pixels: If true, discards the image from the result | |
Returns: | |
The de-serialized TF example augmented with the inferred detections. | |
""" | |
tf_example = tf.train.Example() | |
(serialized_example, detected_boxes, detected_scores, | |
detected_classes) = tf.get_default_session().run([ | |
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor, | |
detected_labels_tensor | |
]) | |
detected_boxes = detected_boxes.T | |
tf_example.ParseFromString(serialized_example) | |
feature = tf_example.features.feature | |
feature[standard_fields.TfExampleFields. | |
detection_score].float_list.value[:] = detected_scores | |
feature[standard_fields.TfExampleFields. | |
detection_bbox_ymin].float_list.value[:] = detected_boxes[0] | |
feature[standard_fields.TfExampleFields. | |
detection_bbox_xmin].float_list.value[:] = detected_boxes[1] | |
feature[standard_fields.TfExampleFields. | |
detection_bbox_ymax].float_list.value[:] = detected_boxes[2] | |
feature[standard_fields.TfExampleFields. | |
detection_bbox_xmax].float_list.value[:] = detected_boxes[3] | |
feature[standard_fields.TfExampleFields. | |
detection_class_label].int64_list.value[:] = detected_classes | |
if discard_image_pixels: | |
del feature[standard_fields.TfExampleFields.image_encoded] | |
return tf_example | |