NCTC / models /research /object_detection /metrics /calibration_evaluation.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
raw
history blame
10.3 kB
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Class for evaluating object detections with calibration metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from object_detection.box_coders import mean_stddev_box_coder
from object_detection.core import box_list
from object_detection.core import region_similarity_calculator
from object_detection.core import standard_fields
from object_detection.core import target_assigner
from object_detection.matchers import argmax_matcher
from object_detection.metrics import calibration_metrics
from object_detection.utils import object_detection_evaluation
# TODO(zbeaver): Implement metrics per category.
class CalibrationDetectionEvaluator(
object_detection_evaluation.DetectionEvaluator):
"""Class to evaluate calibration detection metrics."""
def __init__(self,
categories,
iou_threshold=0.5):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
iou_threshold: Threshold above which to consider a box as matched during
evaluation.
"""
super(CalibrationDetectionEvaluator, self).__init__(categories)
# Constructing target_assigner to match detections to groundtruth.
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(
matched_threshold=iou_threshold, unmatched_threshold=iou_threshold)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
self._target_assigner = target_assigner.TargetAssigner(
similarity_calc, matcher, box_coder)
def match_single_image_info(self, image_info):
"""Match detections to groundtruth for a single image.
Detections are matched to available groundtruth in the image based on the
IOU threshold from the constructor. The classes of the detections and
groundtruth matches are then compared. Detections that do not have IOU above
the required threshold or have different classes from their match are
considered negative matches. All inputs in `image_info` originate or are
inferred from the eval_dict passed to class method
`get_estimator_eval_metric_ops`.
Args:
image_info: a tuple or list containing the following (in order):
- gt_boxes: tf.float32 tensor of groundtruth boxes.
- gt_classes: tf.int64 tensor of groundtruth classes associated with
groundtruth boxes.
- num_gt_box: scalar indicating the number of groundtruth boxes per
image.
- det_boxes: tf.float32 tensor of detection boxes.
- det_classes: tf.int64 tensor of detection classes associated with
detection boxes.
- num_det_box: scalar indicating the number of detection boxes per
image.
Returns:
is_class_matched: tf.int64 tensor identical in shape to det_boxes,
indicating whether detection boxes matched with and had the same
class as groundtruth annotations.
"""
(gt_boxes, gt_classes, num_gt_box, det_boxes, det_classes,
num_det_box) = image_info
detection_boxes = det_boxes[:num_det_box]
detection_classes = det_classes[:num_det_box]
groundtruth_boxes = gt_boxes[:num_gt_box]
groundtruth_classes = gt_classes[:num_gt_box]
det_boxlist = box_list.BoxList(detection_boxes)
gt_boxlist = box_list.BoxList(groundtruth_boxes)
# Target assigner requires classes in one-hot format. An additional
# dimension is required since gt_classes are 1-indexed; the zero index is
# provided to all non-matches.
one_hot_depth = tf.cast(tf.add(tf.reduce_max(groundtruth_classes), 1),
dtype=tf.int32)
gt_classes_one_hot = tf.one_hot(
groundtruth_classes, one_hot_depth, dtype=tf.float32)
one_hot_cls_targets, _, _, _, _ = self._target_assigner.assign(
det_boxlist,
gt_boxlist,
gt_classes_one_hot,
unmatched_class_label=tf.zeros(shape=one_hot_depth, dtype=tf.float32))
# Transform from one-hot back to indexes.
cls_targets = tf.argmax(one_hot_cls_targets, axis=1)
is_class_matched = tf.cast(
tf.equal(tf.cast(cls_targets, tf.int64), detection_classes),
dtype=tf.int64)
return is_class_matched
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns a dictionary of eval metric ops.
Note that once value_op is called, the detections and groundtruth added via
update_op are cleared.
This function can take in groundtruth and detections for a batch of images,
or for a single image. For the latter case, the batch dimension for input
tensors need not be present.
Args:
eval_dict: A dictionary that holds tensors for evaluating object detection
performance. For single-image evaluation, this dictionary may be
produced from eval_util.result_dict_for_single_example(). If multi-image
evaluation, `eval_dict` should contain the fields
'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
properly unpad the tensors from the batch.
Returns:
a dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
update ops must be run together and similarly all value ops must be run
together to guarantee correct behaviour.
"""
# Unpack items from the evaluation dictionary.
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
image_id = eval_dict[input_data_fields.key]
groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
detection_boxes = eval_dict[detection_fields.detection_boxes]
detection_scores = eval_dict[detection_fields.detection_scores]
detection_classes = eval_dict[detection_fields.detection_classes]
num_gt_boxes_per_image = eval_dict.get(
'num_groundtruth_boxes_per_image', None)
num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None)
is_annotated_batched = eval_dict.get('is_annotated', None)
if not image_id.shape.as_list():
# Apply a batch dimension to all tensors.
image_id = tf.expand_dims(image_id, 0)
groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
detection_boxes = tf.expand_dims(detection_boxes, 0)
detection_scores = tf.expand_dims(detection_scores, 0)
detection_classes = tf.expand_dims(detection_classes, 0)
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
else:
num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.shape(detection_boxes)[1:2]
else:
num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
if is_annotated_batched is None:
is_annotated_batched = tf.constant([True])
else:
is_annotated_batched = tf.expand_dims(is_annotated_batched, 0)
else:
if num_gt_boxes_per_image is None:
num_gt_boxes_per_image = tf.tile(
tf.shape(groundtruth_boxes)[1:2],
multiples=tf.shape(groundtruth_boxes)[0:1])
if num_det_boxes_per_image is None:
num_det_boxes_per_image = tf.tile(
tf.shape(detection_boxes)[1:2],
multiples=tf.shape(detection_boxes)[0:1])
if is_annotated_batched is None:
is_annotated_batched = tf.ones_like(image_id, dtype=tf.bool)
# Filter images based on is_annotated_batched and match detections.
image_info = [tf.boolean_mask(tensor, is_annotated_batched) for tensor in
[groundtruth_boxes, groundtruth_classes,
num_gt_boxes_per_image, detection_boxes, detection_classes,
num_det_boxes_per_image]]
is_class_matched = tf.map_fn(
self.match_single_image_info, image_info, dtype=tf.int64)
y_true = tf.squeeze(is_class_matched)
y_pred = tf.squeeze(tf.boolean_mask(detection_scores, is_annotated_batched))
ece, update_op = calibration_metrics.expected_calibration_error(
y_true, y_pred)
return {'CalibrationError/ExpectedCalibrationError': (ece, update_op)}
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary of groundtruth numpy arrays required
for evaluations.
"""
raise NotImplementedError
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary of detection numpy arrays required for
evaluation.
"""
raise NotImplementedError
def evaluate(self):
"""Evaluates detections and returns a dictionary of metrics."""
raise NotImplementedError
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
raise NotImplementedError